¹³₄Be₉

¹⁴C(π⁻,**p**) **1998Go30**

	History		
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	J. H. Kelley, C. G. Sheu and J. E. Purcell	NDS 198,1 (2024)	1-Aug-2024

1998Go30: ¹⁴C(π -,p) E at rest. Measured missing mass spectra.

A 30 MeV π^- beam, from the LAMPF, was slowed in a beryllium moderator and stopped in a 25 mg/cm² \approx 77% enriched ¹⁴C target. Protons from the ¹⁴C(π^- ,p) capture reactions were measured using the MEPI two-armed Δ E-E semiconductor spectrometer; the ¹³Be excited state energies were deduced by analysis of the missing mass spectra.

Three resolved peaks are observed above the ¹²Be+n threshold at E_{res} =1.87, 2.95 and 4.96 MeV. However, poor statistics in the lower energy region yield two ambiguous interpretations; the region below E_{res} =1.5 MeV can be fit using either one peak at E_{res} =0.65 MeV *10* with Γ ≈250 keV or with two peaks at 0.09 MeV *10* and 0.68 MeV *10* each having Γ <200 keV. We take the single peak interpretation, but also highlight the poor quality of data below $E_{c.m.}(n+{}^{12}Be_{g.s.})=1.5$ MeV.

¹³Be Levels

E(level) [‡]	Г	$E' (MeV)^{\dagger}$	Comments
0.20×10 ³ 10	≈250 keV	0.65 10	E(level): Possible doublet involving the ground and first excited states.
1.42×10 ³ 10	0.3 MeV 1	1.87 10	
2.50×10 ³ 10	<150 keV	2.95 10	
4.51×10 ³ 10	≈1.7 MeV	4.96 20	

[†] E' is a relative excitation energy scale with E'=0 at the neutron separation energy. We use this scale because most articles report level energies with respect to the $n+{}^{12}Be_{g.s.}$ center of mass energy.

[‡] The ground state is taken as $E_{c.m.}(n+{}^{12}Be_{g.s.})=0.45$ MeV *1*; see Adopted Levels.