¹³C(¹⁴C, ¹⁴O) **1992Os04**

Type Author Citation Literature Cutoff Date
Full Evaluation J. H. Kelley, C. G. Sheu and J. E. Purcell NDS 198,1 (2024)

1-Aug-2024

1992Os04: 13 C(14 C, 14 O) E=337 MeV, measured spectra; deduced Q, Δ M, possible levels, J, π . Used a 300 μ g/cm² highly enriched 13 C target at the VICKSI-facility at HMI. Momentum analyzed reaction products using Q3D spectrometer at θ =5°. Essentially three states are seen, initially presumed to be E_x =0 (Q_0 =-37.02 MeV and Δ M=35.16 MeV), 3.12 MeV 7 and 6.5 MeV 2. The measured widths are analyzed and used to constrain possible J^{π} values. A J^{π} =1/2+ ground state is expected from theory, but the lowest state reported here is inconsistent with this interpretation.

See also (1992BoZV,1993BoZP,1993BoZT,1993BoZW,1994PeZZ,1995Pe12, 1995OsZX).

¹³Be Levels

E(level)‡	\mathbf{J}^{π}	Γ	E' (MeV) [†]	Comments
$1.56 \times 10^3 \ 5$	$(5/2^+,1/2^-)$	0.3 MeV 2	2.01 5	State is reported with Q_0 =-37.02 MeV 5, which implies Δ M=35.16 MeV 5.
$4.68 \times 10^3 7$		0.4 MeV 2		
$8.1 \times 10^3 \ 2$		0.9 MeV 3	8.5 2	

[†] E' is a relative excitation energy scale with E'=0 at the neutron separation energy. We use this scale because most articles report level energies with respect to the $n+^{12}Be_{g,s}$ center of mass energy.

[‡] The ground state is taken as $E_{c.m.}(n+{}^{12}Be_{g.s.})=0.45$ MeV I; see Adopted Levels.