⁹Be(¹³B,X) 2014Es07

	History		
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	J. H. Kelley, C. G. Sheu and J. E. Purcell	NDS 198,1 (2024)	1-Aug-2024

1988Ta10: Measured the interaction cross section of \approx 790 MeV/nucleon ¹³B on ⁹Be, ^{nat}C, ²⁷Al targets at the LBNL/Bevalac. Analyzed cross sections in a Glauber model and deduced the interaction radius, R_I=2.76 fm *10*. They also deduced the rms radii for the proton (2.42 fm *11*), neutron (2.50 fm *12*) and matter (2.46 fm *12*) distributions.

2014Es07: XUNDL dataset compiled by TUNL, 2014.

The authors measured the charge changing reaction cross sections of boron isotopes and deduced their root mean square proton radii.

Beams of $\approx 850 - 900$ MeV/nucleon boron isotopes were produced by fragmenting 22 Ne($^{10,14-17}$ B) and 40 Ar($^{11-13}$ B) ions on a thick 9 Be foil at the GSI/FRS fragment separator. The beam species were identified by Δ E (ionization chamber) vs time-of-flight before they impinged on a 4.010 g/cm² thick carbon target. An ionization chamber located after the target was used to identify charge changing reaction events.

In the discussion, the rms proton radii for 10,11 B are obtained from e⁻ and π^- scattering and muonic X-ray studies, while for heavier boron isotopes the proton radii are obtained by analyzing the charge changing cross sections, σ_{α} , in a Glauber model. The proton (2.48 fm 3) and matter (2.41 fm 5) rms radii values are given for 13 B. Finally, the rms proton radii are compared with rms matter radii derived from interaction cross section measurements in the literature.

2017Ta06: Measured reaction cross sections on ¹H, ⁹Be, ^{nat.}C, and ²⁷Al at the NIRS/Japan. Analyzed data using Glauber model. Deduced matter density distribution.

See other analysis in (1990Li39, 1990Lo10, 1992La13, 1995Pe19, 1996Sh13, 1997Ho04, 1997Ka32, 2000Bh09, 2001Oz04, 2003Um02, 2004Ne16, 2012Ji01, 2017Ah08, 2019Fo08).

¹³B Levels

E(level)	$J^{\pi \dagger}$	Comments	
0	3/2-	$R_{\rm rms}$ (proton)=2.48 fm 3 obtained from Glauber model analysis of the charge changing cross section σ_{α} =723 mb	
		6 at $E(^{13}B)=897$ MeV/nucleon.	

[†] From Adopted Levels.