2 **H**(15 **C**, α) **2014Wu10**

	History		
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	J. H. Kelley, C. G. Sheu and J. E. Purcell	NDS 198,1 (2024)	1-Aug-2024

2014Wu10: XUNDL dataset compiled by TUNL, 2015.

The authors used the highly spin selective (d,α) deuteron transfer reaction to study states with "stretched" nuclear configurations. A beam of 15.7 MeV/nucleon ¹⁵C ions was produced using the ²H(¹⁴C,¹⁵C) reaction at the ANL/ATLAS In-Flight production facility. The beam impinged on 145 μ g/cm² (Cd₂)_n polyethylene foils located at the HELIcal Orbit Spectrometer (HELIOS) target position. The kinematics of α particles from (d,α) reactions were determined from analysis of the HELIOS array data, while recoiling boron isotopes were detected in an array of position sensitive Si detectors that covered $\theta_{lab}=1.0^{\circ}-5.6^{\circ}$ for 92% of the azimuthal angle range. The resolution for excitation energy was found as ≈ 240 keV FWHM.

The reaction data were analyzed for α -particles in coincidence with any boron isotope; this gave access to population of bound states, as well as, 1-n and 2-n unbound states.

¹³B Levels

E(level)	J^{π}	L	Comments
0	3/2-		J^{π} : From Adopted Levels.
3.6×10^{3}			E(level): three states have previously been observed at $E_x=3.53$, 3.68 and 3.71 MeV.
10.0×10^3			
11.7×10^{3}	(5/2,7/2)+†	(2) [†]	
12.2×10^{3}	$(5/2,7/2)^+$ [†]	(2) [†]	

[†] For 11.7- and 12.2-MeV doublet. Comparison of the angular distribution of the $E_x \approx 12$ MeV group with the ${}^{2}H({}^{14}C,\alpha){}^{12}B^*(5.61, J^{\pi}=3^+)$ suggests this doublet results from the coupling of a $1s_{1/2}$ neutron to an aligned $[(0p_{3/2})^{-2}]_{3+}$ configuration in ${}^{12}B$.