²**H**(¹²**B,p**) **2010Ba06**

History								
Туре	Author	Citation	Literature Cutoff Date					
Full Evaluation	J. H. Kelley, C. G. Sheu and J. E. Purcell	NDS 198,1 (2024)	1-Aug-2024					

 $J^{\pi}(^{12}B \text{ g.s.})=1^+.$

2010Ba06: XUNDL dataset compiled by TUNL, 2010.

- A 75 MeV/nucleon beam of ¹²B ions, produced by bombarding a cryogenic deuterium gas cell with ¹¹B ions at the ANL/ATLAS facility, impinged on a 73 μ g/cm² CD₂ target located at the HELIOS (HELIcal Orbit Spectrometer) target position. Reaction protons were emitted in the backwards direction and followed a single helical orbit in the 1.05 T axial magnetic field before reaching a barrel shaped array of position sensitive Si detectors that surrounded the incident beam axis. The forward moving ¹³C ions were stopped in a Δ E-E telescope that covered $\theta_{lab}=0.5^{\circ}-2.8^{\circ}$.
- The momentum of the emitted proton was determined and excited states were resolved with $\Delta E \approx 100$ keV FWHM. The angular distribution for population of ¹³B(3.48, 3.68 MeV) was determined over $\theta_{c.m.} = 8^{\circ} 30^{\circ}$ by analyzing the p+¹³B coincidences. The angular distributions were analyzed via DWBA analysis.

2010Le02: XUNDL dataset compiled by TUNL, 2010.

- A 75 MeV/nucleon beam of ¹²B ions, from the ANL/ATLAS facility, impinged on a 150 μ g/cm² CD₂ target. A set of three position-sensitive annular Si detectors measured protons at $\theta_{lab}=110^{\circ}-161^{\circ}$ while forward moving boron isotopes were identified in a Δ E-E telescope that covered $\theta_{lab}=1.3^{\circ}-7.2^{\circ}$. Neutron bound and unbound states of ¹³B were identified at E_x=0, 3.48, 3.68, 5.105, 5.388 MeV; only the ground state was resolved.
- The angular distribution was determined for the ground state over $\theta_{c.m.}=7.5^{\circ}-30^{\circ}$, and it was analyzed via DWBA analysis to obtain spectroscopic data useful for determining the astrophysical ¹²B(n, γ) reaction rates. Also see 2008WuZY, 2011BaZX for other ANL reports.

See (2021Du10) for a calculation of the cross section at astrophysically relevant energies.

¹³B Levels

E(level) [†]	$J^{\pi \#}$	L#	s#	Comments
0	3/2-	1	1.1 3	
3.48×10^{3}	$(1/2^+)$	0,2		$S_{L=2} \le 0.05 \ S_{L=0}$ component (2010Ba06).
3.68×10 ^{3‡}	(5/2 ⁺ ,3/2 ⁺)	2,0		The L=0 component is less than $\approx 2\%$ of the L=0 component for the 3.48 MeV state. The authors suggest that $J^{\pi}=5/2^+$ is favored based on absence of L=0 component in the angular distribution and a better fit to the ratios of spectroscopic factor (2010Ba06).
5105 [‡]				
5388 [‡]				

[†] Nominal values given in (2010Ba06, 2010Le02).

 \ddagger Unresolved in (2010Le02).

[#] From DWBA analysis of spectroscopic factors in (2010Le02).

 ${}^{13}_{5}B_{8}$