²⁰⁸Pb(¹³B, ¹³B) **2022Wa16**

Author Citation Literature Cutoff Date
J. H. Kelley, C. G. Sheu and J. E. Purcell NDS 198,1 (2024)

1-Aug-2024

2022Wa16: XUNDL dataset compiled by TUNL (2022).

Full Evaluation

The authors measured elastic scattering of the ¹³O and ¹³B mirror nuclei on ²⁰⁸Pb and analyzed the nuclear densities obtained from optical model analyses.

A beam of 254 MeV 13 B ions from the HIRFL in Lanzhou impinged on a 12.24 mg/cm² thick 208 Pb target. Scattered 13 B ions were momentum analyzed using an array of four position sensitive Δ E-E Si-detector telescopes that covered $\theta \approx 3^{\circ}$ to 27°. Differential cross sections were analyzed for θ_{lab} =4° to 15°. Authors indicate 13 Bg.s. was resolved from the E_x=3.28 MeV first excited state, but participation of any 208 Pb excited states was unresolved.

The data were analysed using two optical model approaches: first, using the double-folding Sao Paulo potential-2 (2021Ch70), and second using the single-folding Xu and Pang potential model (2013Xu06). The data are reasonably fit using standard global parameterization inputs. The discussion details an approach for obtaining the proton, neutron and matter rms radii. A comparison of the ¹³B results with those of ¹³O suggests a thin proton skin for ¹³O.

¹³B Levels

E(level) Comments

 $\frac{1}{(r_{p}^{2})^{1/2}=2.354 \text{ fm}; (r_{n}^{2})^{1/2}=2.641 \text{ fm and } (r_{m}^{2})^{1/2}=2.534 \text{ fm}.}$