¹**H**(¹³**B,X**) **2021Li64**

History									
Туре	Author	Citation	Literature Cutoff Date						
Full Evaluation	J. H. Kelley, C. G. Sheu and J. E. Purcell	NDS 198,1 (2024)	1-Aug-2024						

2021Li64: XUNDL dataset compiled by TUNL (2022).

The authors determined the spectroscopic factors for ${}^{1}H({}^{13}B,d)$ *s*-, *p*- and *d*-wave neutron transfer to low-lying ${}^{12}B$ states. Using these spectroscopic factors, they analyzed the intruder *s*- and *d*-wave strengths that comprise the ${}^{13}B$ ground state.

- A beam of 23 MeV/nucleon ¹³B ions from the RCNP/Osaka electromagnetic isotope separator impinged on a 6.76 mg/cm² polyethylene target that was rotated slightly by 20° with respect to the incident beam. The ¹²B +*d* reaction products were momentum analyzed using a set of three 5 cm × 5 cm position sensitive ΔE - ΔE -E telescopes. The ¹²B ejectiles were detected using the T0 telescope, which was centered along θ =0°; deuterons were detected by the T1 and T2 telescopes, which were centered on the horizontal plane at θ =-31° and θ =-70°, respectively. Lastly, a position sensitive Si annular detector was positioned at backward angles to detect protons from any ²H(¹³B,p) reactions.
- Differential cross sections for ${}^{1}H({}^{13}B,p)$ elastic scattering were obtained and evaluated via optical model analysis, while ${}^{1}H({}^{13}B,d)$ reactions to ${}^{12}B$ states up to $E_x=6.0$ MeV were evaluated via DWBA using FRESCO to obtain the relative spectroscopic factors. For some higher-lying states, the ${}^{12}B$ ejectile neutron decayed to ${}^{11}B$, which was detected and identified via ΔE -E in the T0 telescope. The dominant neutron transfer orbital from each state was analyzed to obtain the ${}^{13}B_{g.s.}$ *s*-, *p* and *d*-wave neutron strengths. The relevant contributions are given below. Values of 83% 6 *p*-wave, 5% 2 *s*-wave and 12% 2 *d*-wave were determined for ${}^{13}B_{g.s.}$. Using these observations, the authors find consistency with shell model predictions and N=8 magicity in the ${}^{13}B$ nucleus.

See also (2013Ti05).

			Levels in ¹² B			
Level Ener	gy (keV)	L	neutron orbital	J^{π}	S _{rel}	
0		1	$1p_{1/2}$	1^{+}	0.54 5	
953		1	$1p_{1/2}$	2+	1.11 7	
1674		0	$2s_{1/2}$	2-	0.06 2	
2621		0	$2s_{1/2}$	1^{-}	0.04 1	
3389		2	$1d_{5/2}$	3-	0.13 2	
4460&452	3	2	$1d_{5/2}$	$2^{-}\&4^{-}$	(Sum)=0.11 2	
6000		2	$1d_{5/2}$	1^{-}	\leq 0.01	
					¹³ B Levels	
E(level)	J ^π				Comments	
0 3	$3/2^ J^{\pi}$: 8	33% 6 onsister	<i>p</i> -wave, 5% 2 <i>s</i> -wave it with shell model p	e and 12% redictions	2 <i>d</i> -wave neutron strengths were deduced for and N=8 magicity in 13 B.	¹³ B _{g.s.} , which are

 ${}^{13}_{5}B_{8}$