¹H(¹²Be,¹³Be) 2023Hu20

	History		
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	J. H. Kelley, C. G. Sheu and J. E. Purcell	NDS 198,1 (2024)	1-Aug-2024

XUNDL dataset compiled by TUNL (2023).

T=5/2 states in ¹³B were populated using thick-target inverse kinematics scattering techniques. An R-matrix analysis of the excitation function determined the J^{π} values for the near-threshold resonances. Using these results, the J^{π} values for near threshold n+¹²Be analog resonances in ¹³Be were deduced using isospin symmetry arguments.

- A beam of 6.0 MeV/nucleon ¹²Be ions from the TRIUMF ISAC-II facility entered the TexAT active target time-projection chamber, and backscattered protons were detected using a set of six Δ E-E detector telescopes at the downstream wall of the TexAT chamber. The reaction kinematics were determined from analysis of the incident ¹²Be and recoiling ¹²Be and proton tracks. Excitation functions for elastic scattering were obtained by analyzing events in the different Δ E-E telescopes separately.
- Evidence for a $J^{\pi}=1/2^+$ resonance at $E_{c.m.}=2.45$ MeV and a $J^{\pi}=5/2^+$ resonance at $E_{c.m.}=4.15$ MeV was found using the MINRMATRIX code. The authors explored any improvement of the fit by adding $J^{\pi}=1/2^-$ and or $3/2^-$ states, but found their experimental data were not sensitive to negative parity states. Expanding on this point, the *conclusion* discussion indicates participation of negative parity states cannot be excluded. The p+¹²Be reaction can populate T=3/2 and 5/2 states, but an argument is made for preferential population of T=5/2 resonances; in this case, the observed resonances may be related to expected ¹³Be resonances by isospin symmetry arguments. As a result, $J^{\pi}=1/2^+$ and $5/2^+$ neutron unbound states in ¹³Be are expected at $E_{c.m.}=0.6$ MeV 1 and 2.34 MeV 6, respectively. These agree well with known states in ¹³Be, and the authors claim this is the first definitive determination of J^{π} values in ¹³B.

¹³B Levels

E(level) [†]	$J^{\pi \dagger}$	Γ^{\dagger}	S	Comments
$18.25 \times 10^3 \ 10$	1/2+	0.7 MeV +4-3	0.16 +9-6	T=(5/2) $\Gamma: \Gamma=0.66 \text{ MeV} +40-25.$
19.95×10 ³ 6	5/2+	0.60 MeV 10	0.49 8	E(level): From $E_{c.m.}(p+{}^{12}Be)=2.45 \text{ MeV } 10.$ T=(5/2) E(level): From $E_{c.m.}(p+{}^{12}Be)=4.15 \text{ MeV } 6.$

[†] From R-matrix analysis in (2023Hu20).