¹⁴C(d, ³He) **2016Be08**

History							
Туре	Author	Citation	Literature Cutoff Date				
Full Evaluation	J. H. Kelley, C. G. Sheu and J. E. Purcell	NDS 198.1 (2024)	1-Aug-2024				

1975Ma41: 14 C(d, 3 He) E=52 MeV from Karlshuhe Cyclotron; measured σ (E(3 He), θ) for θ =10° to 40° using four ΔE-E telescopes. Deduced levels at 13 B(0, 3.71 MeV) with C^{2} S=3.75 and 0.29, respectively. DWBA analysis. Self supporting 40% enriched 14 C 30 μ g/cm² target. See reanalysis of these data and discussion on the ANC for 14 C \rightarrow 13 B+p in (2022Ke03). 2016Be08: XUNDL dataset compiled by TUNL (2016).

The authors analyzed the angular distributions of 3 He particles from the 14 C(d, 3 He) 13 B proton-removal reaction, in inverse kinematics, to study the J^{π} values of 13 B states involved in the reaction.

A beam of 17.1 MeV/nucleon 14 C ions with the intensity of \approx 0.1 pnA, produced in the sputter source at the ANL/ATLAS facility, impinged on 140 μ g/cm²(Cd₂)_n polyethylene foils located at the HELIcal Orbit Spectrometer (HELIOS) target position. The kinematics of 3 He particles from (d, 3 He) reactions were determined from analysis of the HELIOS array data, while recoiling boron isotopes were detected in set of silicon detector Δ E-E telescopes that covered θ_{lab} =1°-5°. The resolution for excitation energies was found as FWHM \approx 180 keV. Angular distributions were analyzed via DWBA to obtain L, J^{π} and C²S values.

The ³He particle reaction data were analyzed in coincidence with any boron isotope to give access to population of unbound states.

¹³B Levels

E(level) [†]	$J^{\pi\dagger}$	L^{\dagger}	C^2S^{\dagger}	Comments
0	3/2-	1		C^2S : See also $C^2S=3.75$ (1975Ma41).
3.8×10^{3}	$(1/2^{-})$	1	0.70 8	C^2S : See also $C^2S=0.29$ (1975Ma41).
$4.8 \times 10^3 \ 2$	$(1/2^+)$	0	0.13 2	
$5.3 \times 10^3 \ 3$	$(1/2,3/2)^-$	1	0.35 6	
$6.3 \times 10^3 \ 4$	+	(0)		E(level): This peak likely contains more than one unresolved state (2016Be08).

[†] From DWBA analysis of spectroscopic factors in (2016Be08).