¹⁴Be β^- n decay **1999Be53,2002Ao03**

	History		
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	J. H. Kelley, C. G. Sheu and J. E. Purcell	NDS 198,1 (2024)	1-Aug-2024

Parent: ¹⁴Be: E=0; $J^{\pi}=0^+$; $T_{1/2}=4.65$ ms *10*; $Q(\beta^-n)=1.532\times10^4$ *13*; $\%\beta^-n$ decay>97.8 ¹⁴Be-Q(β^-n): From 2021Wa16.

¹⁴Be-%β-1n from discussion below: %β-0n<0.6% (2002Ao03): %β-2n<1.6 and %β-3n<0.5 from (1999Be53) where $P_{2n}+3P_{3n}<1.6\%$ was deduced.

- ¹⁴Be-The reported ¹⁴Be lifetime values are discrepant: $T_{1/2}$ =4.2 ms 7 (1986Cu01), 4.35 ms 17 (1988Du09), 4.78 ms 19 (1995ReZZ,2008ReZZ), 4.8 ms 2(stat.) 4(sys.) and 4.0 ms 12 (1995Be25), 4.29 ms 12 (1997Be66), and 4.84 ms 10 (2002Ao03). The value $T_{1/2}$ =4.65 ms 10 is accepted; this value is the weighted average of measurements.
- ¹⁴Be-% β^- n decay: Studies of ¹⁴Be β^- n decay aimed to locate the position of the ¹⁴B $J^{\pi}=1^+$ excited state, which was suggested to be the only allowed low-lying ¹⁴B state populated in ¹⁴Be β decay. In (1986Cu01) and the associated thesis, the level was predicted to lay close to the ¹⁴B neutron binding energy. Numerous experimental failures perpetuated ambiguity in the state's position before the issue was finally settled in (2002Ao03). The ¹⁴B $J^{\pi}=1^+$ state was found at 1.38 MeV, which is well above the 970 keV neutron binding energy. In this case, with no decay to β allowed bound states, ¹⁴Be decay must be dominated by β -delayed neutron emission. This point seems to have been overlooked in (2015Bi05), where a sizeable (9%) component to ¹⁴B bound states is suggested.
- ¹⁴Be-%β⁻n decay: With the exception of (1988Du09), all experiments find only upper limits on the population of the π=– bound levels in ¹⁴B*(0,740); stringent limits of P(0n)<4% (1999Be53) and <0.6% (2002Ao03) are determined. P(0n)<0.6%, which is based on the search for ¹⁴B decay radiations is accepted. P(0n)<0.6% is compatible with expectations for the forbidden decay to $\Delta\pi$ =yes states and incompatible with, for example, the unexpected P_{0n}=14% *3* findings of (1988Du09).
- ¹⁴Be-%β⁻n decay: Evidence for β-delayed one neutron decay is significant. In (1988Du09) P(1n)=81% 4 is reported, but these results were found as unreliable. In (2002Ao03), analysis of the ¹³B radiations implies P(1n)=94% 5, while data from a moderated ³He counter gives P(1n)>96% (1999Be53). The data offer some ambiguity in the analysis, since (2002Ao03) assign only 91% 9 of the intensity to neutron decay from ¹⁴B*(1.28 MeV *I*) to ¹³B_{g.s.}; no γ-rays are observed in coincidence, so ¹⁴Be β-decay is assumed to populate ¹⁴B*(1.28 MeV) directly. There are no other known allowed states, so single- or multi-neutron emission must dominate any expectation. The decay path is not fully understood for all the β⁻1n intensity. Two additional decay radiations appear relevant to β⁻1n decay; first is the 3536 keV transition to ¹³B ground state observed by (1995Be25) and (2002Ao03), and second is the E_n=3.02 MeV group observed by (1995Be25). The intensity I(γ:3536)=0.9% *3* was measured by (2002Ao03), though no neutron group was observed in a coincidence spectrum. Also a very weak population of an E_n=3.02 MeV group was observed by (1995Be25); while no γ-rays are observed in a coincidence, the neutron group cannot be definitively associated with decay to ¹³B_{g.s.}. P(1n)=94% 5 could be suggested (2002Ao03), but this value is not favored.
- ¹⁴Be-%β⁻n decay: The 2n and 3n decay modes are not clearly identifiable, most reported values are given as upper limits. Two relevant results are given in (2002Ao03), where P(2n)=6% 5 is deduced from their P(0n)<0.6% and P(1n)=94% 6 values, and in (1999Be53) where analysis of the n-n and n-n-n correlations in their moderated ³He counter set the limit (P(2n)+3P(3n))<1.6% (1σ value) (based on the 95% confidence limit P_{2n}+3P_{3n}<2.4% 8).
- ¹⁴Be-% β^- n decay: Further studies on the open charged particle decay channels have found the $\beta^-\alpha$ intensity of P(α)<0.004% (2002Je14) and the β^- t intensity of P(t)=0.02% *I* (2002Je14); the parent levels are not identified. See also P(α)<0.002% (2002Je11) and the β^- t intensity of P(t)=0.021% *8* (2002Je11).
- ¹⁴Be- $\%\beta^-$ n decay: In the above discussion, the evaluator finds reason to recommend: P(0n)<0.6%; (P(2n)+3P(3n))<1.6%; P(\alpha)<0.004\%; P(t)=0.02\% 1. Using these, the remainder is P(1n)>97.8\%.
- 1986Cu01: A beam of ¹⁴Be ions was produced by fragmenting a 540 MeV ¹⁸O beam on Be and Ta targets. The secondary fragments were filtered using the RPMS Wein Filter at NSCL and were focused on a Δ E-E stopping detector telescope. When a particle was measured in the telescope the rf was scrambled until a decay was measured in the telescope. Analysis of the implantation to decay period, gated on nuclear species, provided the lifetime measurement. T_{1/2}=4.2 ms 7 was measured.
- 1988Du09: ¹⁴Be was produced by fragmenting a 60 MeV/nucleon ²²Ne beam on either a tantalum or a carbon target; ¹⁴Be was selected using the LISE spectrometer. The β -particles were detected using a plastic scintillator while the delayed neutrons were detected through the Gd(n, γ) reaction. T_{1/2}=4.35 ms *17*, P_{0n}=0.14 *3*, P_{1n}=0.81 *4* and P_{2n}=0.05 *2* were measured. See also (1988DuZT,1988DuZZ). *Evaluator's comment:* ¹⁴B has two bound states with π =- (2013Be25); any combination of intensities adding to 14% *3* feeding these forbidden transitions is unreasonable. An upper limit of %I β ≤0.6 is expected. The later work of (2002Ao03), which searched for radiations from the ¹⁴B daughter, convincingly verified this upper limit. A systematic error appears to be present in the work of (1988Du09).

¹⁴Be $β^-$ n decay 1999Be53,2002Ao03 (continued)

- 1995Be25: ¹⁴Be ions were produced by fragmenting an 80 MeV/nucleon ¹⁸O beam on a Be target and filtering in the A1200 separator. The beam was implanted in a thick BC412 scintillator during a 10.3 ms accumulation period, followed by either a 10.3 ms or 40 ms beam-off counting period. Beta particles from the decay were detected by the implantation detector, while delayed neutrons were detected using an array of 15 curved scintillator bars that were placed 1 meter from the implantation scintillator. Neutron energies were deduced from the time-of-flight (tof) between the β -detector and the neutron array. In addition a HPGe detector was placed 83 mm from the implantation target.
- Analysis of the data indicated 3-4% contamination from ¹¹Li, a correction was possible since the ¹¹Li decay had been studied in the same configuration. A neutron detector threshold of 0.77 MeV was unfortunately used in the measurements, which led to a significantly low number of β -n events. The data showed evidence for delayed neutron groups at E_n= 3.02 MeV 3 and 3.52 MeV 7 with intensities of 0.11% 2(stat) 4(sys) and 0.30% 3(stat) 5(sys); the peaks from these weak branches lay on top of a broad peak that was associated with 2n and 3n decay. The multi-neutron branching ratio associated with the broad peak is 5% *1*(stat) 2(sys). Furthermore, it is plausible that, for example, the E_n=3.52 MeV neutron group may correspond to sequential 2n decay.
- Data from the HPGe detector indicated small participation from two transitions related to ${}^{13}B$ with $E_{\gamma}=3528$ keV *1* and 3680 keV *1*, however low statistics prevented analysis of the neutron groups that feed these transitions. No 740 keV γ -ray was observed for the transition between the ${}^{14}B$ first excited state and ground state. Note: the 3680 keV *1* energy for the ${}^{13}C^*(3684.507) \rightarrow g.s.$ transition is lower than expected.
- A critical issue in the data collection is the relatively low rate of delayed neutron emission. While more than 85% of the decays were expected to be accompanied with neutrons, only about 7% of that intensity is presently observed. It is then suggested that a state in ¹⁴B, neutron unbound by <800 keV, is strongly populated. Lifetimes were deduced by two techniques, though high backgrounds significantly complicated the determinations; 4.8 ms 2(stat) 4(sys) was deduced from the raw decay curve while 4.0 ms *12* was deduced from the β -n coincidence data.
- 1997Be66: The authors of (1995Be25) carried out a new measurement at RIKEN, aimed at identifying the low-energy neutron group that participates in the decay. A ¹⁴Be beam was produced by fragmenting a 100 MeV/nucleon ¹⁸O beam on a Be target; the beam was implanted in the center of a Si detector telescope comprised of 5 detectors. The telescope was sandwiched between two sets of plastic scintillators that detected beta particles. Neutrons were detected in an array of BC408 scintillator walls that were positioned \approx 200 cm from the implantation detector. In addition a HPGe detector was positioned 131 mm from the implantation detector.
- Analysis of the decay curve indicates $T_{1/2}$ =4.29 ms *18*. Attention was focused on the neutron energy region below E_n =800 keV, where a sharp peak with E_n =287 keV *3* and width=60 keV *5* is observed. The peak falls at the edge of the neutron detectors' thresholds and hence yields significant uncertainty in the branching ratio; I(n:287)=39 to 100%. No γ -rays are observed in coincidence with the neutron group, strongly (but inconclusively) suggesting decay to ¹³B ground state. Decay to ¹³B_{g.s.} would imply decay from a ¹⁴B*(1.28 MeV 2). The 740 keV γ -ray is not found in the spectrum, and no comment is given on the 3528 and 3680 keV gamma rays.
- 1998KoZP, 1999Be53, 2002Be53: An uranium carbide target was bombarded by a 1-GeV proton beam to produce a ¹⁴Be beam that was implanted in a kapton foil located at the center of a moderated ³He cylindrical neutron counter array. The β -particles from ¹⁴Be decay were detected by a plastic scintillator located directly behind the implantation foil. The P_n value was determined from the rate of neutrons detected in the ³He counter. The total neutron-emission probability P_n=101% 4 was measured along with an upper limit of P_{2n}+3P_{3n} < 2.4% (95% confidence limit). Combining P_n with the P_{2n}+3P_{3n} limit P_{1n}≈100%(> 96%), P_{0n}<4%, and P_{2n}+3P_{3n}=0.8% 8 were deduced. See additional discussion suggesting an error in % β -2n value of (1988Du09).
- 1997Ao01, 1997Ao04, 2002Ao03: A thick Be target was bombarded by a 100 MeV/nucleon ¹⁸O beam to produce a ¹⁴Be beam that was selected by the RIPS separator. The beam was implanted in a Si detector.
- The β -rays were detected using a set of ΔE - ΔE -E plastic scintillator detectors that were positioned above and below the implantation detector, and a ΔE - ΔE coincidence requirement was implemented to reduce background. Neutrons were detected either in a low-energy array located 50 cm away from the stopper or in a high-energy array located 1.5 m from the stopper. In addition a HPGe clover detector was placed 149 mm from the target.
- $T_{1/2}$ =4.84 ms *10* was deduced by analyzing the decay curve associated with the E_n =288-keV group; there is no understanding of the discrepancy between this and prior values. The neutron tof spectrum was dominated by the E_n =288 keV *1* peak, I(n:288)=91% *9*, that was not found in coincidence with any γ -ray. The intensity of an additional neutron group at E_n =3.51 MeV *6* is found to be in agreement with the expectation from β -delayed neutron decay of the ¹³B daughter nucleus. The present analysis was insensitive to the 3.02 MeV group reported by (1995Be25). The γ -ray spectrum indicated peaks at E_{γ} =3536 keV *2* and 3685 keV *1*; the 3536 keV transition with I(γ)=0.9% *3* is ascribed to a transition fed following delayed neutron decay to states in ¹³B, while the 3685 keV transition is fed in ¹³B decay to ¹³C states.
- Analysis of the data provides a measure on the 0n, 1n and 2n decay branches. While the 740 keV transition between ¹⁴B first

¹⁴Be $β^-$ n decay 1999Be53,2002Ao03 (continued)

excited state and ${}^{14}B_{g.s.}$ is not observed, a limit on decay to either of these states is found as I(0n)<0.6% by searching for the 6.09 MeV γ -ray that is fed in 81% of ${}^{14}B$ decays to ${}^{14}C$. Similarly, the intensity of the 3685 keV transition, which is fed by 7.6% of ${}^{13}B$ decays to ${}^{13}C$, implies I(1n)=94% 5. No γ rays from ${}^{12}B$ decay were observed so I(2n)=6% 5 is deduced from $1=P_{0n}+P_{1n}+P_{2n}$.

See theoretical analyses in (1996Ti05).

Summarizing again, in the above discussion, the evaluator finds reason to recommend: P(0n) < 0.6% (2002Ao03); (P(2n)+3P(3n))<1.6% (1999Be53); $P(\alpha) < 0.004\%$ and P(t)=0.02% 1 (2002Je14). Using these, the remainder is P(1n) > 97.8%.

¹³B Levels

E(level) [†]	$J^{\pi \dagger}$	T _{1/2} †
0.0	3/2 ⁻	17.30 ms <i>17</i>
3536.4 <i>17</i>	3/2 ⁻	0.90 ps <i>21</i>

[†] From Adopted Levels.

$\gamma(^{13}\text{B})$

Eγ	I_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f \mathbf{J}_f^{\pi}$	Comments
3536 2	0.9 3	3536.4	3/2-	0.0 3/2-	E_{γ} : From (2002Ao03); see also 3528 keV <i>I</i> (1995Be25). Ly: From (1995Be25).

[†] Absolute intensity per 100 decays.

Delayed Neutrons (13B)

E(n)	E(¹³ B)	I(n) [†]	E(¹⁴ B)	Comments
3.02×10 ³ 3 288 1	0.0	0.11 5 91 9	1280	E(n),I(n): From (1995Be25). The decay is from ¹⁴ B*(1280 keV <i>10</i>). E(n),I(n): From (2002Ao03).

[†] Absolute intensity per 100 decays.

¹⁴Be β^- n decay 1999Be53,2002Ao03

Decay Scheme

 γ Intensities: $I_{(\gamma+ce)}$ per 100 parent decays I(n) Intensities: I(n) per 100 parent decays

