${}^{11}B(t,p)$ 1964Mi04,1978Aj02

	History		
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	J. H. Kelley, C. G. Sheu and J. E. Purcell	NDS 198,1 (2024)	1-Aug-2024

1960Mu07: ^{nat}B(t,p) E=5 MeV; θ =10°-61°; ΔE_{res} =15 keV; Q=-0.233 MeV 4 and ΔM =20.397 MeV 4. University of Manchester. 1962Ma19: ¹¹B(t,p) E=3.3 MeV; ¹³B ions were produced in a 2 mg/cm² ¹¹B target at the University of Manchester. The ¹⁰B content was measured to be less than 0.2%. Beam on/beam off periods were 100 ms, with counting starting 5 ms after the beam was removed and lasting an additional 65 ms. The β and γ particles were measured in singles and coincidence mode using a plastic phosphor detector for β s and a NaI scintillator for γ rays. The decay is mainly to ¹³C. Deduced ratio of ¹³B/¹²B lifetimes =0.86 2 initially resulting in $T_{1/2}$ =18.6 ms 5; using the present $T_{1/2}(^{12}B)$ =20.22 ms 4 gives 17.39 ms 41. Deduced β branch to $^{13}C^*(3.67 \text{ MeV } 2)$ as 7.0% 15 and set an upper limit for delayed neutrons as <1.5%. Other limits are set.

1964Mi04: ¹¹B(t,p) E=11 MeV. Tritons from the Aldermaston Tandem generator impinged on a $\approx 50 \ \mu g/cm^2$ 98.6% enriched ¹¹B target. Reaction protons were measured using a multi-channel magnetic spectrometer. The ground state and nine excited states were observed and measurements were taken over for $\theta \approx 2^{\circ} - 170^{\circ}$. The l and J^{π} values were determined via plane-wave analysis.

1968Ch28: ¹¹B(t,p) E=3.0 MeV. ¹³B nuclei were produced via triton bombardment of a natural boron target at the Nippon Atomic Industry Group Laboratory in Kawasaki Japan. The beam was chopped and the beam-off period permitted counting for at least 80 ms. The target was surrounded by a pile of paraffin blocks and the yield of β -delayed was counted with a BF₃ scintillator counter. Analysis of the neutron counting rate indicated $T_{1/2}=16$ ms *I*. Additionally, a plastic scintillator counter was placed near the target to count decay β rays. By comparing the β and neutron yields $\%\beta$ -n \approx (0.52 26) was determined.

1969Jo21: ¹¹B(t,p) E=3.0 MeV. The β decay of ¹³B was studied at the BNL Van de Graaff. β , $\beta\gamma$ and β n measurements permitted a determination of the branching ratios to ${}^{13}C$ states. The β -n branches through ${}^{13}C^*(7.55, 8.86)$ are measured with 0.094% 20 and 0.16% 3.

1971Wi07: ¹¹B(t,p) at 3.0 MeV at BNL. Measured β s from ¹³B decay using a plastic scintillator. Deduced T_{1/2}=17.33 ms 17.

1971Wi09: ¹¹B(t,p). ¹³B ions, produced using a 2 MeV triton beam on a ¹¹B target at the BNL Van de Graaff, were collected in Au, Pt and Pd metallic stopper foils that were held in a strong magnetic field. Measured g=2.11808 34. μ =+3.17712 μ N 51 was deduced from analysis of the β -decay asymmetries. See also (1973HaZV).

1974A112: ¹¹B(t,p) E_t=3 MeV. Measured $\%\beta$ -n=(0.022 7) at BNL Van de Graaff facility.

1978Aj02: ¹¹B(t,p), A series of (t,p) reactions were studied at $E_t=23$ MeV at the LANL three-stage Van de Graaff facility. The reaction products were momentum analyzed in a broad range magnetic spectrometer for $\theta = 5^{\circ} - 55^{\circ}$. Eighteen states up to E_x=11.8 MeV were reported. Widths are deduced for the higher-lying states, and L values are deduced for $^{13}B(0, 6.93 \text{ MeV})$.

1983An15: ¹¹B(t,p), The authors determined Q=-233.54 keV 100 by measuring the ¹¹B(t,p) reaction protons at θ =28°-40° using a $30 \ \mu g/cm^2$ target at the Strasbourg Van de Graff. Using this, $\Delta M(^{13}B)=16562.17$ keV 104 was deduced. The authors evaluated the IMME mass equation for the A=13 quartet.

2006Ge21: The ¹¹B(t,p) excitation function was measured for $E_t=2.53-6.95$ MeV using the RFNC EGP-10 Tandem accelerator; The measurement utilized activation and off-line counting techniques and deduced information on ¹⁴C. $T_{1/2}$ =16.59 ms 2 was also deduced. Also see (2002GeZT, 2005GeZY).

¹³B Levels

E(level) [†]	$J^{\pi \ddagger}$	$T_{1/2}$ or Γ^{\dagger}	L‡	Comments
0	3/2-	17.33 ms 17	0	μ =+3.17712 51 (1971Wi09)
				g=2.11808 34 (1971Wi09)
				E(level): (1983An15) deduced Q= -233.36 keV 100 and $\Delta M=16562.17$ keV
				104. Analyzed IMME equation.
				$T_{1/2}$: From 17.39 ms 41 (1962Ma19) and 17.33 ms 17 (1971Wi07); see also
				16 ms 1 (1968Ch28) and 16.59 ms 2 (2006Ge21).
				J^{π} : (1960Mu07).
3483 5	(1/2,3/2,5/2)+		1	E(level): Weighted average of 3483 keV 5 (1964Mi04) and 3482 keV 10 (1978Aj02).
3533 5	(1/2,5/2,7/2)-		2	E(level): Weighted average of 3533 keV 5 (1964Mi04) and 3531 keV 10 (1978Aj02).
3681 5	(1/2,3/2,5/2)+		1	E(level): Weighted average of 3681 keV 5 (1964Mi04) and 3681 keV 10 (1978Aj02).
3713 5	(1/2,5/2,7/2)-		2	E(level): Weighted average of 3712 keV 5 (1964Mi04) and 3715 keV 10
				Continued on next page (footnotes at end of table)

11 **B**(t,p) 1964Mi04,1978Aj02 (continued)

¹³B Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	$T_{1/2}$ or Γ^{\dagger}	L [‡]	Comments
			_	(1978Aj02).
4129 10	$(1/2, 5/2, 7/2)^{-}$		2	E(level): Average of 4130 keV <i>10</i> (1964Mi04) and 4128 keV <i>10</i> (1978Aj02).
4827 10				E(level): Weighted average of 4820 keV 10 (1964Mi04) and 4834 keV 10 (1978Ai02).
5017 10	(1/2,3/2,5/2)		1	E(level): Average of 5010 keV 10 (1964Mi04) and 5023 keV 10 (1978Aj02).
5106 10		60 keV 10		
5387 10		14 keV 4		E(level): Average of 5380 keV 10 (1964Mi04) and 5393 keV 10 (1978Aj02).
				Γ: Weighted average of 15 keV 5 (1964Mi04) and 10 keV 10 (1978Aj02).
6165 10		<20 keV		E(level): Weighted average of 6170 keV 20 (1964Mi04) and 6164 keV 10 (1978Aj02).
				Γ: In Fig. 10 of (1978Aj02) this state is narrower than the $E_x=5.39$ MeV state. Γ <20 keV is assigned.
6434 10		36 keV 5		č
6932 10		55 keV 15	>4	L: From (1978Aj02).
8138 10		100 keV 15		
8684 10		89 keV 20		
9.44×10 ³ 3		81 keV 25		
$10.22 \times 10^3 2$		210 keV 20		
$10.89 \times 10^3 \ 2$ 11800?				

[†] From (1978Aj02), except where noted.
[‡] From plane-wave analysis in (1964Mi04), except where noted.

2