¹²⁹Ce ε decay (3.5 min) 1997Gi08,2001Xi01

	History		
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Janos Timar and Zoltan Elekes, Balraj Singh	NDS 121, 143 (2014)	31-May-2014

Parent: ¹²⁹Ce: E=0.0; $J^{\pi}=(5/2^+)$; $T_{1/2}=3.5 \text{ min } 3$; $Q(\varepsilon)=5040 \ 40$; $\%\varepsilon+\%\beta^+$ decay=100.0 ¹²⁹Ce-Q(ε): From 2012Wa38.

¹²⁹Ce-J^{π}, T_{1/2}: From ¹²⁹Ce Adopted Levels. For J^{π} assignment of (5/2⁺) rather than 7/2⁺ as proposed in 1998Io01 based on 9/2⁻ for 107.6-keV isomer, see discussion in J^{π} comments for the 107.6-keV isomer and ground state in ¹²⁹Ce Adopted Levels.

1997Gi08: ¹²⁹Ce from ⁹⁴Mo(⁴⁰Ca,n4p),E=225 MeV; He-jet, Ge G, semi for ce. Measured Eγ, Iγ, γγ, βγ coin, xγ coin, (ce)γ coin, half-life. Deduced conversion coefficients, levels, J, π.
2001Xi01 (also 1997Xi01): ¹²⁹Ce from ¹¹⁷Sn(¹⁶O,4n),E=102 MeV; He-jet, chemical separation, Ge G. Measured Eγ, Iγ, γγ,

2001Xi01 (also 1997Xi01): ¹²⁹Ce from ¹¹⁷Sn(¹⁶O,4n),E=102 MeV; He-jet, chemical separation, Ge G. Measured E γ , I γ , $\gamma\gamma$, $\beta\gamma$ coin, x γ coin. Deduced levels, log *ft* values.

Both studies deduced level feeding intensities. There are disagreements between the two studies.

Others: 1993Al03, 1969ArZZ, 1963La03.

Experimental conversion coefficients are taken from 1997Gi08.

¹²⁹La Levels

E(level) [@]	$\mathrm{J}^{\pi}^{\dagger}$	T _{1/2} †	E(level) [@]	$\mathrm{J}^{\pi \dagger}$
0.0	$(3/2^+)$	11.6 min 2	587.64 [#] 14	$(1/2^+ \text{ to } 7/2^+)$
68.18 5	(5/21)		619.60 13	$(3/2^+ \text{ to } 9/2^+)$
216.29" 23	$(1/2^+ \text{ to } 9/2^+)$		645.39 15	$(9/2^+)$
239.61 8	$(5/2^+)$		652.5 [‡] 3	$(1/2 \text{ to } 9/2^+)$
248.45 8	$(7/2^+)$		706.46 12	$(5/2^+ \text{ to } 9/2^+)$
270.91 [#] 13	$(1/2 \text{ to } 7/2^+)$		782.3 [‡] 3	$(5/2^+ \text{ to } 9/2^+)$
398.47 9	$(3/2^+, 5/2^+, 7/2^+)$		796.21 [#] 12	$(3/2^+$ to $7/2^+)$
440.26 13	$(7/2^+)$		832.31 [#] 15	$(3/2^+ \text{ to } 9/2^+)$
446.34 12	$(9/2^+)$		928.87 [#] 19	$(7/2^+ \text{ to } 11/2^+)$
464.02 12	$(5/2^+, 7/2^+)$		934.92 [#] 18	(1/2 to 9/2 ⁺)
472.21 [#] 14	$(1/2^+ \text{ to } 7/2^+)$		966.34 [#] 14	$(1/2 \text{ to } 7/2^+)$
556.00? [#] 20	$(1/2 \text{ to } 7/2^+)$		1015.26 [#] 15	(1/2 to 7/2 ⁺)

[†] From Adopted Levels.

[‡] Reported only in 1997Gi08.

[#] Reported only in 2001Xi01.

[@] From least-squares fit to $E\gamma$ data.

ε, β^+ radiations

E(decay)	E(level)	$\mathrm{I}\beta^+$ @	Ie [@]	$\log ft^{\ddagger}$	$I(\varepsilon + \beta^+)^{\dagger @}$	Comments
$(4.02 \times 10^3 \ 4)$	1015.26	0.70 14	0.30 6	6.8	1.0 2	av E β =1360 19; ε K=0.252 8; ε L=0.0344 10; ε M+=0.0097 3
$(4.07 \times 10^3 \ 4)$	966.34	0.6 1	0.2 1	6.9	0.8 2	av E β =1383 <i>19</i> ; ε K=0.244 <i>7</i> ; ε L=0.0333 <i>10</i> ; ε M+=0.0093 <i>3</i>
$(4.11 \times 10^3 \ 4)$	934.92	0.86 22	0.34 8	6.7	1.2 3	av Eβ=1398 19; εK=0.238 7; εL=0.0326 10; εM+=0.0091 3
$(4.11 \times 10^3 \ 4)$	928.87	0.5 1	0.2 1	7.0	0.7 2	av Eβ=1401 19; εK=0.237 7; εL=0.0324 10; εM+=0.0091 3
$(4.21 \times 10^3 \ 4)$	832.31	0.89 15	0.31 5	6.8	1.2 2	av Eβ=1445 19; εK=0.222 7; εL=0.0303 9; εM+=0.00850 24
$(4.24 \times 10^3 \ 4)$	796.21	1.3 1	0.46 5	6.6	1.8 2	av E β =1462 <i>19</i> ; ε K=0.216 <i>6</i> ; ε L=0.0295 <i>9</i> ; ε M+=0.00829 <i>24</i>

Continued on next page (footnotes at end of table)

1997Gi08,2001Xi01 (continued)

 129 Ce ε decay (3.5 min)

				ϵ, β^+	radiations (cor	tinued)
E(decay)	E(level)	Ιβ ⁺ @	Ie [@]	$\log ft^{\ddagger}$	$I(\varepsilon + \beta^+)^{\dagger}$	Comments
$(4.26 \times 10^3 \ 4)$	782.3	2.4 4	0.81 15	6.4	3.2 6	av E β =1469 19; ε K=0.214 6; ε L=0.0293 9; ε M+=0.00821 24
$(4.33 \times 10^3 \ 4)$	706.46	3.3 5	1.0 1	6.3	4.3 6	av Eβ=1504 19; εK=0.203 6; εL=0.0278 8; εM+=0.00779 22
$(4.39 \times 10^3 \ 4)$	652.5	1.8 4	0.53 12	6.6	2.3 5	av $E\beta$ =1529 <i>19</i> ; ε K=0.196 <i>6</i> ; ε L=0.0268 <i>8</i> ; ε M+=0.00751 2 <i>1</i>
$(4.39 \times 10^3 \& 4)$	645.39	1.5 2	0.46 7	6.7 [#]	2.0 3	av $E\beta$ =1533 19; ε K=0.195 6; ε L=0.0266 8; ε M+=0.00747 21
$(4.42 \times 10^3 \ 4)$	619.60	4.0 7	1.1 2	6.3	5.1 9	av $E\beta$ =1545 <i>19</i> ; ε K=0.192 <i>6</i> ; ε L=0.0262 <i>8</i> ; ε M+=0.00734 <i>21</i>
$(4.45 \times 10^3 \ 4)$	587.64	1.7 2	0.48 7	6.6	2.2 3	av $E\beta$ =1560 <i>19</i> ; ε K=0.188 <i>6</i> ; ε L=0.0256 <i>7</i> ; ε M+=0.00718 <i>20</i>
$(4.48 \times 10^3 \& 4)$	556.00?	0.7 1	0.2 1	7.0	0.9 1	av $E\beta$ =1574 <i>19</i> ; ε K=0.184 <i>5</i> ; ε L=0.0251 <i>7</i> ; ε M+=0.00703 <i>20</i>
$(4.57 \times 10^3 \ 4)$	472.21	1.2 2	0.31 4	6.9	1.5 2	av $E\beta$ =1614 19; ε K=0.174 5; ε L=0.0237 7; ε M+=0.00665 18
$(4.58 \times 10^3 \ 4)$	464.02	2.0 4	0.51 10	6.6	2.5 5	av $E\beta$ =1617 19; ε K=0.173 5; ε L=0.0236 7; ε M+=0.00661 18
$(4.59 \times 10^3 \& 4)$	446.34	1.3 3	0.32 8	6.8 [#]	1.6 4	av $E\beta = 1626 \ I9$; $\varepsilon K = 0.171 \ 5$; $\varepsilon L = 0.0233 \ 7$; $\varepsilon M + = 0.00653 \ I8$
$(4.60 \times 10^3 \ 4)$	440.26	3.7 7	0.92 18	6.4	4.6 9	av $E\beta$ =1629 19; ε K=0.170 5; ε L=0.0232 7; ε M+=0.00650 18
$(4.64 \times 10^3 \ 4)$	398.47	1.0 5	0.25 12	7.0	1.3 6	av $E\beta$ =1648 19; ε K=0.165 5; ε L=0.0226 6; ε M+=0.00633 17
$(4.77 \times 10^3 \ 4)$	270.91	0.7 2	0.2 1	7.2	0.9 2	av $E\beta$ =1708 <i>19</i> ; ε K=0.152 <i>4</i> ; ε L=0.0207 <i>6</i> ; ε M+=0.00582 <i>16</i>
$(4.79 \times 10^3 \ 4)$	248.45	3.4 5	0.72 11	6.5	4.1 6	av $E\beta$ =1719 <i>19</i> ; ε K=0.150 <i>4</i> ; ε L=0.0204 <i>6</i> ; ε M+=0.00573 <i>16</i>
$(4.80 \times 10^3 \ 4)$	239.61	11 2	2.3 4	6.0	13 2	av Eβ=1723 19; εK=0.149 4; εL=0.0203 6; εM+=0.00570 15
$(4.82 \times 10^3 \& 4)$	216.29	< 0.2	< 0.05	>7.7	<0.3	av Eβ=1734 19; εK=0.147 4; εL=0.0200 6; εM+=0.00562 15
$(4.97 \times 10^3 \ 4)$	68.18	15 3	2.8 5	6.0	18 <i>3</i>	av Eβ=1803 19; εK=0.134 4; εL=0.0182 5; εM+=0.00511 14
(5.04×10 ³ 4)	0.0	22 6	3.9 11	5.84 <i>13</i>	26 7	av E β =1836 <i>19</i> ; ε K=0.128 <i>4</i> ; ε L=0.0175 <i>5</i> ; ε M+=0.00489 <i>13</i> I(ε + β ⁺): estimated by 2001Xi01 from growth-decay curve for 278.6 γ from ¹²⁹ La decay.

[†] Values treated by the evaluators as approximate since there are several disagreements between the data from 1997Gi08 and 2001Xi01. The β feeding to ground-state in 2001Xi01 seems to be only an estimated value.

[±] Values are treated as only approximate and not used for J^{π} assignments. [#] Value of ≈ 6.8 is too low to be realistic for $5/2^+$ to $9/2^+ \beta$ transition. [@] Absolute intensity per 100 decays.

[&] Existence of this branch is questionable.

				¹²⁹ Ce ε α	lecay (3.5 min)	1997Gi08,2	2001Xi01 (co	ontinued)	
γ ⁽¹²⁹ La)									
E_{γ}^{\dagger}	$I_{\gamma}^{\ddagger a}$	E _i (level)	J_i^π	\mathbf{E}_{f}	J_f^π	Mult.	$\alpha^{\boldsymbol{b}}$	Comments	
68.20 6	30.7	68.18	(5/2+)	0.0	(3/2+)	M1	3.25	α (L)exp=0.36 3 α (K)=2.78 4; α (L)=0.378 6; α (M)=0.0786 12 α (N)=0.01728 25; α (O)=0.00281 4; α (P)=0.000217 3 I _{γ} : calculated from I(γ +ce)=100 (2001Xi01) using α =3.25 from BrIcc code.	
127.6 [@] 3	0.3 1	398.47	$(3/2^+, 5/2^+, 7/2^+)$	270.91	(1/2 to 7/2 ⁺)	[D,E2]	0.48 36		
148.2 [@] 3	1.3 1	216.29	$(1/2^+ \text{ to } 9/2^+)$	68.18	$(5/2^+)$	[D,E2]	0.29 21		
158.9 <i>1</i>	2.2 1	398.47	$(3/2^+, 5/2^+, 7/2^+)$	239.61	(5/2+)	M1,E2	0.34 5	α (K)=0.269 <i>18</i> ; α (L)=0.058 <i>25</i> ; α (M)=0.013 <i>6</i> α (N)=0.0027 <i>12</i> ; α (O)=0.00041 <i>16</i> ; α (P)=1.83×10 ⁻⁵ <i>13</i> α (K)exp=0.24 <i>5</i> ; K/L=4.5 <i>6</i>	
171.5 <i>1</i>	30.3 2	239.61	(5/2+)	68.18	(5/2 ⁺)	M1	0.238	$\begin{aligned} &\alpha(\mathbf{K}) = 0.203 \ 3; \ \alpha(\mathbf{L}) = 0.0273 \ 4; \ \alpha(\mathbf{M}) = 0.00567 \ 8 \\ &\alpha(\mathbf{N}) = 0.001247 \ 18; \ \alpha(\mathbf{O}) = 0.000203 \ 3; \ \alpha(\mathbf{P}) = 1.582 \times 10^{-5} \\ &23 \\ &\alpha(\mathbf{K}) \exp = 0.176 \ 9; \ \mathbf{K}/\mathbf{L} = 6.5 \ 9 \end{aligned}$	
179.1 [#] 4	2.1 ^{&} 10	619.60	$(3/2^+ \text{ to } 9/2^+)$	440.26	$(7/2^+)$	[D,E2]	0.16 11		
180.4 <i>I</i>	13.9 2	248.45	(7/2 ⁺)	68.18	(5/2 ⁺)	M1	0.207	$\begin{aligned} &\alpha(\mathbf{K}) = 0.1771 \ 25; \ \alpha(\mathbf{L}) = 0.0237 \ 4; \ \alpha(\mathbf{M}) = 0.00493 \ 7 \\ &\alpha(\mathbf{N}) = 0.001084 \ 16; \ \alpha(\mathbf{O}) = 0.0001764 \ 25; \\ &\alpha(\mathbf{P}) = 1.376 \times 10^{-5} \ 20 \\ &\alpha(\mathbf{K}) \exp[=0.147 \ 11; \ \mathbf{K/L} = 7.1 \ 12 \end{aligned}$	
192.0 3	0.2 1	440.26	$(7/2^+)$	248.45	$(7/2^+)$	[M1,E2]	0.189 16		
197.9 2	2.6 1	446.34	(9/2+)	248.45	(7/2+)	M1,E2	0.173 12	α (K)=0.139 3; α (L)=0.026 8; α (M)=0.0056 18 α (N)=0.0012 4; α (O)=0.00019 5; α (P)=9.7×10 ⁻⁶ 10 α (K)exp=0.15 4; K/L>5	
201.0 [#] 5	0.76 15	440.26	$(7/2^+)$	239.61	$(5/2^+)$	[M1,E2]	0.165 11		
215.6 2	1.5 4	464.02	(5/2+,7/2+)	248.45	(7/2+)	M1,E2	0.133 6	$\alpha(K)=0.1082 \ I8; \ \alpha(L)=0.019 \ 5; \ \alpha(M)=0.0041 \ I2$ $\alpha(N)=0.00089 \ 23; \ \alpha(O)=0.00014 \ 3; \ \alpha(P)=7.6\times10^{-6} \ 9$ $\alpha(K)\exp=0.11 \ 2; \ K/L>4$	
$221.5^{@} 3$ 239.5 2	1.5 <i>4</i> 2.1 <i>1</i>	619.60 239.61	(3/2 ⁺ to 9/2 ⁺) (5/2 ⁺)	398.47 0.0	$(3/2^+, 5/2^+, 7/2^+)$ $(3/2^+)$	[D,E2] [M1,E2]	0.08 <i>5</i> 0.097 <i>2</i>		
242.5 [#] 5	1.2 3	706.46	$(5/2^+ \text{ to } 9/2^+)$	464.02	$(5/2^+, 7/2^+)$	[D,E2]	0.06 4		
248.5 2	2.5 1	248.45	(7/2+)	0.0	(3/2+)	(E2)	0.0862	$\begin{array}{l} \alpha(\text{K}) = 0.0683 \ 10; \ \alpha(\text{L}) = 0.01415 \ 21; \ \alpha(\text{M}) = 0.00303 \ 5 \\ \alpha(\text{N}) = 0.000653 \ 10; \ \alpha(\text{O}) = 9.88 \times 10^{-5} \ 15; \ \alpha(\text{P}) = 4.42 \times 10^{-6} \\ 7 \end{array}$	
щ	P -							α (K)exp=0.09 3; K/L \approx 4	
254.0 [#] 5	2.4 [∞] 6	652.5	$(1/2 \text{ to } 9/2^+)$	398.47	$(3/2^+, 5/2^+, 7/2^+)$	[D,E2]	0.05 3		
256.0 ^w 3	1.3 2	472.21	$(1/2^+ \text{ to } 7/2^+)$	216.29	$(1/2^+ \text{ to } 9/2^+)$	[D,E2]	0.05 3		
$260.0^{\textcircled{0}}{2}$	0.3 1	706.46	$(5/2^+ \text{ to } 9/2^+)$	446.34	(9/2 ⁺)	[D,E2]	0.05 3		
271.0 ^{^w} 2	4.3 1	270.91	$(1/2 \text{ to } 7/2^+)$	0.0	$(3/2^+)$	[D,E2]	0.043 27		
308.13	1.0.3	792.2	$(3/2^{+} \text{ to } 9/2^{+})$	398.47	$(3/2^+, 3/2^+, 1/2^+)$				
318.0" 3	2.1 0	182.3	$(3/2)$ to $9/2^{+}$	464.02	$(3/2^{+}, 1/2^{+})$				

ω

From ENSDF

				¹²⁹ Ce	$\varepsilon \epsilon \text{ decay } (3.5 \text{ min})$	1997 G	i08,2001X	i01 (continued)
γ ⁽¹²⁹ La) (continued)								
E_{γ}^{\dagger}	$I_{\gamma}^{\ddagger a}$	E _i (level)	${ m J}^{\pi}_i$	\mathbf{E}_{f}	J_f^π	Mult.	α b	Comments
330.3 2	4.3 2	398.47	(3/2+,5/2+,7/2+)	68.18	(5/2+)	M1,E2	0.038 4	α (K)exp=0.04 2 α (K)=0.032 4; α (L)=0.00485 23; α (M)=0.00102 6 α (N)=0.000222 11; α (O)=3.52×10 ⁻⁵ 9; α (P)=2.3×10 ⁻⁶ 4
336.0 [#] 5	2.7 <mark>&</mark> 6	782.3	$(5/2^+ \text{ to } 9/2^+)$	446.34	(9/2+)			
342 [#] 1	0.6 ^{&} 3	782.3	$(5/2^+ \text{ to } 9/2^+)$	440.26	$(7/2^+)$			
348.5 [@] 3	1.1 2	619.60	$(3/2^+ \text{ to } 9/2^+)$	270.91	$(1/2 \text{ to } 7/2^+)$			
370.7 5	0.6 ^{&} 3	619.60	$(3/2^+ \text{ to } 9/2^+)$	248.45	$(7/2^+)$			
372.2 [#] 3	7.0 ^{&} 7	440.26	(7/2+)	68.18	(5/2+)	M1	0.0302	α(K)=0.0259 4; α(L)=0.00340 5; α(M)=0.000704 10 α(N)=0.0001549 22; α(O)=2.53×10-5 4; α(P)=1.99×10-6 3 α(K)exp=0.036 13; K/L>5 In 2001Xi01 the strong 371.7 keV γ is considered as a single γ, in 1997Gi08 it is resolved to 370.7 and 372.2 keV γ rays in γγ coin.
378.0 2	3.8 4	446.34	(9/2 ⁺)	68.18	$(5/2^+)$	[E2]	0.0230	
380.1 2	1.9 4	619.60	$(3/2^+ \text{ to } 9/2^+)$	239.61	$(5/2^+)$	M1 E2	0.022.3	$\alpha(K)$ and $-0.022.6$
395.8 2	6.2.2	464.02	(5/2*,7/2*)	68.18	(5/2 ')	M1,E2	0.023 3	α (K)exp=0.023 6 α (K)=0.019 3; α (L)=0.00283 9; α (M)=0.000591 13 α (N)=0.000129 4; α (O)=2.06×10 ⁻⁵ 10; α (P)=1.4×10 ⁻⁶ 3
397 [#] 1	1.5 ^{&} 3	645.39	$(9/2^+)$	248.45	$(7/2^+)$			
398.5 2	3.6 2	398.47	(3/2 ⁺ ,5/2 ⁺ ,7/2 ⁺)	0.0	(3/2+)	M1,E2	0.023 3	α (K)exp=0.024 8 α (K)=0.019 3; α (L)=0.00277 9; α (M)=0.000580 14 α (N)=0.000127 4; α (O)=2.02×10 ⁻⁵ 10; α (P)=1.4×10 ⁻⁶ 3
404.0 [@] 2	0.8 1	472.21	$(1/2^+ \text{ to } 7/2^+)$	68.18	$(5/2^+)$			
405.72	1.0 I	645.39	$(9/2^+)$	239.61	$(5/2^+)$			
414" <i>I</i> 440.0 2	0.64 <i>3</i> 4.4 <i>1</i>	652.5 440.26	$(1/2 \text{ to } 9/2^+)$ $(7/2^+)$	239.61 0.0	$(3/2^+)$ $(3/2^+)$	(E2)	0.0147	α (K)=0.01226 <i>18</i> ; α (L)=0.00196 <i>3</i> ; α (M)=0.000413 <i>6</i> α (N)=8.98×10 ⁻⁵ <i>13</i> ; α (O)=1.408×10 ⁻⁵ <i>20</i> ; α (P)=8.60×10 ⁻⁷ <i>12</i> Mult.: α (K)exp=0.019 <i>8</i> gives M1,E2, but Δ J ^{π} =(2) requires E2.
458.5 [#] 5	1.0 ^{&} 3	706.46	$(5/2^+ \text{ to } 9/2^+)$	248.45	$(7/2^+)$			
464.0 2	1.3 2	464.02	$(5/2^+, 7/2^+)$	0.0	$(3/2^+)$			
466.72	4.3 2	706.46	$(5/2^+ \text{ to } 9/2^+)$	239.61	$(5/2^{+})$			
$4/2.2 \overset{\circ}{\sim} 2$	1.0 1	472.21	$(1/2^+ \text{ to } 7/2^+)$	0.0	$(3/2^{+})$			
482.5° 2	0.6 1	928.87	$(1/2^{+} \text{ to } 11/2^{+})$	446.34	(9/2 ⁺)			
519.5° 2	2.4 1	587.64	$(1/2^+ \text{ to } 7/2^+)$	68.18	(5/2+)			
$536.6 \frac{3}{4}$	1.7 5	934.92	$(1/2 \text{ to } 9/2^+)$	398.47	$(3/2^+, 5/2^+, 7/2^+)$			
543.1 ^m 5	0.9 3	782.3	$(5/2^+ \text{ to } 9/2^+)$	239.61	$(5/2^{+})$			
548.0 ^w 2	0.31	796.21	$(3/2^+ \text{ to } 7/2^+)$ $(3/2^+ \text{ to } 9/2^+)$	248.45	$(1/2^+)$ (5/2 ⁺)			
556.0 [@] 2	2.0 <i>1</i>	556.00?	(3/2 to 9/2) $(1/2 \text{ to } 7/2^+)$	0.0	$(3/2^+)$ $(3/2^+)$			Evaluators consider the placement of the 556.0 keV γ tentative due to lack of supporting $\gamma\gamma$ coin or other γ from the level.

4

From ENSDF

 $^{129}_{57}\text{La}_{72}\text{-}4$

¹²⁹ Ce ε decay (3.5 min)	1997Gi08,2001Xi01 (continued)

 $\gamma(^{129}\text{La})$ (continued)

E_{γ}^{\dagger}	$I_{\gamma}^{\ddagger a}$	E_i (level)	J^π_i	\mathbf{E}_{f}	${ m J}_f^\pi$	Comments
577.3 2	1.8 2	645.39	$(9/2^+)$	68.18	(5/2 ⁺)	
584.0 [#] 5	1.8 <mark>&</mark> 6	652.5	$(1/2 \text{ to } 9/2^+)$	68.18	$(5/2^+)$	
584.0 [@] 2	1.6 1	832.31	$(3/2^+$ to $9/2^+)$	248.45	$(7/2^+)$	
587.6 [@] 2	2.2 2	587.64	$(1/2^+ \text{ to } 7/2^+)$	0.0	$(3/2^+)$	
616.7 [@] 2 638.4 2	1.3 <i>3</i> 0.6 <i>1</i>	1015.26 706.46	$(1/2 \text{ to } 7/2^+)$ $(5/2^+ \text{ to } 9/2^+)$	398.47 68.18	$(3/2^+, 5/2^+, 7/2^+)$ $(5/2^+)$	
664.0 [@] 3	0.4 1	934.92	$(1/2 \text{ to } 9/2^+)$	270.91	$(1/2 \text{ to } 7/2^+)$	
680.5 [@] 3	0.8 4	928.87	$(7/2^+ \text{ to } 11/2^+)$	248.45	$(7/2^+)$	
728.0 [@] 2	1.7 2	796.21	$(3/2^+ \text{ to } 7/2^+)$	68.18	$(5/2^+)$	
744.5 [@] 2	0.7 1	1015.26	$(1/2 \text{ to } 7/2^+)$	270.91	$(1/2 \text{ to } 7/2^+)$	
764.0 [@] 2	1.0 3	832.31	$(3/2^+$ to $9/2^+)$	68.18	$(5/2^+)$	
796.0 [@] 2	1.8 2	796.21	$(3/2^+ \text{ to } 7/2^+)$	0.0	$(3/2^+)$	
866.6 [@] 3	0.4 2	934.92	(1/2 to 9/2 ⁺)	68.18	$(5/2^+)$	
897.9 [@] 2	0.9 2	966.34	(1/2 to 7/2 ⁺)	68.18	$(5/2^+)$	
966.6 [@] 2	0.9 1	966.34	(1/2 to 7/2 ⁺)	0.0	$(3/2^+)$	
015.1 [@] 3	0.2 1	1015.26	(1/2 to 7/2 ⁺)	0.0	$(3/2^+)$	

S

[†] Weighted average of Eγ values from 1997Gi08 and 2001Xi01.
[‡] From 2001Xi01, unless if otherwise noted.
[#] Reported only in 1997Gi08.
[@] Reported only in 2001Xi01.
[&] From 1997Gi08, normalized to the 171.5 keV transition.
^a For absolute intensity per 100 decays, multiply by 0.47 5.
^b Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ-ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

¹²⁹₅₇La₇₂

6

From ENSDF

 $^{129}_{57}La_{72}$ -6

 $^{129}_{57} La_{72}$ -6