¹²⁹ Te β^- decay (33.6 d) 1976 Ma35

	History				
Туре	Author	Citation	Literature Cutoff Date		
Full Evaluation	Janos Timar and Zoltan Elekes, Balraj Singh	NDS 121, 143 (2014)	31-May-2014		

Parent: ¹²⁹Te: E=105.51 3; $J^{\pi}=11/2^-$; $T_{1/2}=33.6 \text{ d } I$; $Q(\beta^-)=1502$ 3; $\%\beta^-$ decay=36 7

¹²⁹Te-Q(β^{-}): From 2012Wa38.

¹²⁹Te-E, J^{π} , $T_{1/2}$: From ¹²⁹Te Adopted Levels.

¹²⁹Te-% β^- decay: I β (to g.s.)=32% 8 is deduced from the measured ratio I β (to g.s.)/I β (to 27 level)=0.58 *12* (1964De10,1969Di01), I(105.5 γ from ¹²⁹Te(33.6 d))=64% and I β (to 27 level from ¹²⁹Te(69.6 min))=89%. I β (to 27 level) reported by 1964De10 was assumed as $\Sigma I\beta$ (to 27 and 278 levels). Uncertainty in I β (to g.s.)/I β (to 27 levels) was estimated as 20% by the evaluators.

1976Ma35: 105 mg enriched ¹²⁸Te (99.5%) was irradiated at the Pool Type Reactor, Livermore. Measured E γ , I γ ,

 $\gamma\gamma$ -coincidences using two Ge(Li) detectors.

Others:

1973Si14: low-temperature nuclear orientation measurements. 20 mg enriched ¹²⁸Te irradiated with neutrons. ³He-⁴He dilution refrigerator was used; the temperature of the radioactive source was kept between 14 mK and 50 mK. Two Ge(Li) detected the G rays at 0 and 90 degrees with respect to the magnetic field.

1969Di01: 100 mg enriched ¹³⁰Te (99.5%) used in (n,2n) reaction at Livermore 14 MeV neutron generator. 200 mg enriched ¹²⁸Te (99.46%) irradiated at Livermore pool-type reactor. γ radiation was detected by 6 cm³ and 20 cm³ Ge(Li) detectors. Coincidence measurements were performed with two NaI(Tl) detectors.

1968Go34, 1956Gr10: β and ce measurements.

1964De10: 3 mg of enriched ¹²⁹Te (97%) irradiated with neutrons in the Apsara reactor and 10 mg of enriched ¹²⁸Te in the DIDO reactor, Harwell. NaI(Tl) used for detecting γ rays and determining relative intensities. Resolution was 8.5% at 662 keV. For $\gamma\gamma$ coincidence, two NaI(Tl) were used. Beta spectrum of ^{129m}Te was studied with Siegbahn-Slatis spectrometer. Beta spectrum of short-lived activity was studied with 4π scintillation β ray spectrometer using plastic phosphors. $\beta\gamma$ coincidences were measured. The log *ft* values were deduced.

Other γ -ray measurements: 1967Be03, 1965Hu08, 1965Bo12, 1964Ra04, 1963Ra11. Other $\gamma\gamma(\theta)$ measurements: 1974Ro32, 1965Gu07, 1964Ka09, 1963Ra11.

¹²⁹I Levels

E(level) [†]	Jπ‡	T _{1/2} ‡	Comments
0.0	$7/2^+$	1.57×10^7 y 4	
27.80 2 278.38 <i>3</i>	$3/2^+$ $3/2^+$	0.104 ns 12	
487.35 <i>3</i>	$5/2^{+}$	11.6 ps 27	
695.89 <i>5</i>	$11/2^{+}$	4.3 ps 5	J^{π} : assignment from $\gamma(\text{temp},\theta)$ (1973Si14).
729.57 <i>3</i>	$(9/2)^+$	3.8 ps 4	
768.76 <i>3</i>	$(7/2)^+$	-	
844.82 <i>3</i>	$(7/2)^+$		
1050.21 3	$(7/2)^+$		
1203.61 11	$(7/2^+)$		
1281.99 4	$(7/2^+)$		
1401.43 3	$(9/2)^{-}$		

[†] From least-squares fit to $E\gamma$ data.

[‡] From Adopted Levels.

$^{129}\mathrm{Te}\,\beta^-$ decay (33.6 d) 1976Ma35 (continued)

β^- radiations

E(decay)	E(level)	Iβ ^{-†}	Log ft	Comments
(206 3)	1401.43	0.15 3	8.47 9	av E β =56.68 90
(326 3)	1281.99	0.0022 5	10.7^{1u} 1	av E β =109.5 11
(404 3)	1203.61	0.00048 13	11.8 ¹ <i>u</i> 1	av $E\beta = 136.8 \ 11$
(557 3)	1050.21	0.037 8	10.6^{1u} 1	av $E\beta = 191.4 \ 11$
(763 3)	844.82	0.009 6	11.9 ¹ <i>u</i> 3	av $E\beta = 267.3 \ 12$
(839 3)	768.76	0.028 6	11.7 ¹ <i>u</i> 1	av E β =296.2 12
(878 3)	729.57	0.70 14	9.92 9	av E β =296.4 12
(912 3)	695.89	3.0 6	9.35 9	av E β =309.9 12
(1608 3)	0.0	32 8	10.2^{1u} I	av E β =609.0 13
				$I\beta^-$: measured Iβ(to g.s.)/Iβ(to 27.8 level)=0.576 <i>18</i> (1964De10), 0.34 (1968Go34) for equilibrium between the isomeric and ground-state activities of ¹²⁹ Te; uncertainty evaluated in 1972Ho55 Nuclear Data Sheets.

E(decay): measured E β =1530 5 (1956Gr10), 1595 10 (1964De10), 1607 7 (1968Go34). All the measured E β values are inconsistent with the recommended

 $Q(\beta^{-})=1502$ 3.

[†] Absolute intensity per 100 decays.

I γ normalization, I(γ +ce) normalization: from level scheme.

 $\boldsymbol{\omega}$

E_{γ}	I_{γ}^{a}	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult.@	$\delta^{@}$	α &	$I_{(\gamma+ce)}^{a}$	Comments
27.81 5	0.58	27.80	5/2+	0.0	7/2+	M1+E2	-0.053 3	5.07 11	3.5 1	α(L)=4.06 9; α(M)=0.825 18; α(N)=0.165 4; α(O)=0.0186 4 ce(L)/(γ+ce)=0.663. δ: magnitude from L1/L2/L3=1/0.145 12/0.119 13 (1965Be26) and using BrIccMixing code; sign from δ=-0.045 14 (from ratio of lines in Mossbauer spectrum (1970De37). Eγ: from level energy difference. I(γ+ce): total Iγ+ce feeding the 27.8-keV level. L: deduced from I(γ+ce) and α
76.10 <i>5</i>	0.0068 [#] 15	844.82	(7/2)+	768.76	(7/2)+	[M1+E2]		3.1 15		$\alpha(K)=2.1$ 7; $\alpha(L)=0.8$ 7; $\alpha(M)=0.18$ 15 $\alpha(N)=0.03$ 3; $\alpha(O)=0.0032$ 24 E_{v} : from level-energy difference.
115.30 16	0.0058 [#] 17	844.82	$(7/2)^+$	729.57	(9/2)+	[M1+E2]		0.8 3		α (K)=0.59 <i>17</i> ; α (L)=0.15 <i>10</i> ; α (M)=0.031 <i>20</i> α (N)=0.006 <i>4</i> ; α (O)=0.0006 <i>4</i>
208.96 5	0.0006 [‡] 1	487.35	5/2+	278.38	3/2+	M1+E2	-0.18 4	0.0988 16		α (K)=0.0844 <i>13</i> ; α (L)=0.01110 <i>20</i> ; α (M)=0.00224 <i>4</i> α (N)=0.000452 <i>8</i> ; α (O)=5.27×10 ⁻⁵ <i>9</i> Additional information 1.
242.2 1	0.014 [#] 2	729.57	(9/2)+	487.35	5/2+	[E2]		0.0812		$\alpha(K)=0.0661 \ 10; \ \alpha(L)=0.01207 \ 17; \ \alpha(M)=0.00248 \ 4 \ \alpha(N)=0.000490 \ 7; \ \alpha(O)=5.13\times10^{-5} \ 8$
250.62 5	0.0084 [†] <i>17</i>	278.38	3/2+	27.80	5/2+	M1+E2	+0.56 +16-12	0.0628 16		α (K)=0.0534 <i>11</i> ; α (L)=0.0076 <i>5</i> ; α (M)=0.00153 <i>9</i> α (N)=0.000308 <i>18</i> ; α (O)=3.49×10 ⁻⁵ <i>15</i>
278.43 5	0.0124 [†] 25	278.38	3/2+	0.0	7/2+	E2		0.0512		$\alpha(K)=0.0422 \ 6; \ \alpha(L)=0.00723 \ 11; \ \alpha(M)=0.001483 \ 21 \ \alpha(N)=0.000293 \ 5; \ \alpha(O)=3.12\times10^{-5} \ 5 \ Mult: from W(\theta) (1974De15).$
281.38 20 281.44 5	<0.002 0.011 <i>1</i>	768.76 1050.21	$(7/2)^+$ $(7/2)^+$	487.35 768.76	5/2 ⁺ (7/2) ⁺	[M1+E2]		0.047 3		$\alpha(K)=0.0394 \ 15; \ \alpha(L)=0.0059 \ 11; \\ \alpha(M)=0.00120 \ 23 \\ \alpha(N)=0.00024 \ 5; \ \alpha(O)=2.7\times10^{-5} \ 4$
320.64 11	0.013 [#] 2	1050.21	(7/2)+	729.57	(9/2)+	[M1+E2]		0.0319 7		α (K)=0.0271 4; α (L)=0.0039 5; α (M)=0.00079 11 α (N)=0.000159 19; α (O)=1.78×10 ⁻⁵ 14

 $^{129}_{53}\mathrm{I}_{76}$ -3

				¹²⁹ T	Te β^- decay (33)	3.6 d) 1976Ma 3	35 (continued)			
$\gamma^{(129}$ I) (continued)										
Eγ	I_{γ}^{a}	E _i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f = \mathbf{J}_f^{\pi}$	Mult.@	$\delta^{@}$	α &	Comments		
357.48 20 459.60 5	≤0.003 0.026 5	844.82 487.35	(7/2) ⁺ 5/2 ⁺	487.35 5/2 ⁺ 27.80 5/2 ⁺	M1+E2	-0.08 +4-5	0.01260	α (K)=0.01090 <i>16</i> ; α (L)=0.001369 <i>20</i> ; α (M)=0.000275 <i>4</i> α (N)=5.57×10 ⁻⁵ <i>8</i> ; α (O)=6.56×10 ⁻⁶ <i>10</i> (460 γ)(28 γ)(θ): A ₂ =-0.160 <i>33</i> , A ₄ =+0.022 <i>60</i> (1965Gu07)		
487.39 5	0.005 1	487.35	5/2+	0.0 7/2+	M1+E2	+0.50 +17-10	0.01057 24	$\alpha(K)=0.00911\ 22;\ \alpha(L)=0.001169\ 18;\ \alpha(M)=0.000235\ 4$ $\alpha(N)=4.75\times10^{-5}\ 8;\ \alpha(O)=5.55\times10^{-6}\ 10$		
490.34 20	< 0.005	768.76	$(7/2)^+$	278.38 3/2+						
552.43 5	$0.006^{\#} 2$	1281.99	$(7/2^+)$	$729.57 (9/2)^+$		0.06.2				
556.65 5	2.52 8	1401.43	(9/2)	844.82 (7/2)	(E1(+M2))	-0.06 2				
562.82 20 671 84 5	$\leq 0.01''$	1050.21	$(1/2)^{+}$ $(0/2)^{-}$	$487.35 5/2^{+}$ 729.57 (9/2) ⁺						
695.88 6	63.9 19	695.89	(9/2) 11/2 ⁺	$0.0 7/2^+$	E2					
701.7 3	0.53 2	729.57	$(9/2)^+$	27.80 5/2+						
705.52 7	0.11 1	1401.43	$(9/2)^{-}$	695.89 11/2+						
716.60 16	≤0.005 [#]	1203.61	$(7/2^+)$	487.35 5/2+						
729.57 5	14.9 6	729.57	(9/2)+	0.0 7/2+	M1+E2	-0.34 6	0.00402 7	$\alpha = 0.00402 \ 7; \ \alpha(\text{K}) = 0.00348 \ 6; \ \alpha(\text{L}) = 0.000432 \ 7; \ \alpha(\text{M}) = 8.67 \times 10^{-5} \ 14 \ \alpha(\text{M}) = 1.76 \times 10^{-5} \ 3; \ \alpha(\text{O}) = 2.07 \times 10^{-6} \ 4$		
740.96 5	0.58 2	768.76	(7/2)+	27.80 5/2+	M1+E2	-0.27 10	0.00390 8	$\alpha(N)=1.70\times10^{-5} 3, \alpha(O)=2.07\times10^{-4} 4$ $\alpha=0.00390 8; \alpha(K)=0.00338 7; \alpha(L)=0.000419 8;$ $\alpha(M)=8.41\times10^{-5} 15$ $\alpha(N)=1.70\times10^{-5} 3; \alpha(O)=2.01\times10^{-6} 4$		
768.77 5	0.060 6	768.76	$(7/2)^+$	$0.0 7/2^+$						
771.80 16	0.0063 [#] 7	1050.21	$(7/2)^+$	278.38 3/2+						
794.60 21	0.012 3	1281.99	$(7/2^+)$ $(7/2)^+$	487.35 5/2+	M1 + E2	10.46.4	0.00202.5	a = 0.002025; $a(K) = 0.002624$; $a(L) = 0.0002255$;		
017.04 5	1.94 0	044.02	(1/2)	27.80 3/2	WIT+E2	+0.40 4	0.00505 5	$\alpha(M)=6.52\times10^{-5} \ 10$ $\alpha(N)=1.322\times10^{-5} \ 20; \ \alpha(O)=1.556\times10^{-6} \ 24$		
844.81 5	0.73 4	844.82	$(7/2)^+$	0.0 7/2+						
924.5 20	<0.0013 [#]	1203.61	$(7/2^+)$	278.38 3/2+						
1003.65 9	0.015 3	1281.99	$(7/2^+)$	278.38 3/2+		0.02.2	0.00100.2			
1022.43 5	0.37 2	1050.21	(7/2)*	27.80 5/2*	M1(+E2)	-0.02 2	0.00188 <i>3</i>	$\alpha = 0.00188 \ 3; \ \alpha(K) = 0.001633 \ 23; \ \alpha(L) = 0.000200 \ 3; \alpha(M) = 4.00 \times 10^{-5} \ 6 \alpha(N) = 8.12 \times 10^{-6} \ 12; \ \alpha(O) = 9.60 \times 10^{-7} \ 14$		
1050.21 5	0.38 <i>3</i>	1050.21	$(7/2)^+$	0.0 7/2+						
1176.0 5	0.002 1	1203.61	$(7/2^+)$	27.80 5/2+						
1203.59 11	0.005 1	1203.61	$(7/2^+)$	$0.0 7/2^+$						
1234.15 8 1281.96 <i>11</i>	0.009 1 0.009 8	1281.99	$(7/2^+)$ $(7/2^+)$	$0.0 7/2^+$						
		/	(.,=)							

4

From ENSDF

 $^{129}_{53}\mathrm{I}_{76}\text{--}4$

 $^{129}_{53}\mathrm{I}_{76}\text{-}4$

$\gamma(^{129}I)$ (continued)

Eγ	I_{γ}^{a}	E_i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_{f}^{π}
1373.75 <i>9</i>	0.0057 <i>6</i>	1401.43	$(9/2)^-$	27.80	5/2+
1401.36 <i>6</i>	0.074 <i>2</i>	1401.43	$(9/2)^-$	0.0	7/2+

[†] From I(250 γ)/I(278 γ) in ¹²⁹Te β^- decay (69.6 min). [‡] From I(209 γ)/I(460 γ)/I(487 γ) in ¹²⁹Te β^- decay (69.6 min).

[#] From $\gamma\gamma$ -coin.

[@] From Adopted Gammas, mainly based on low-temperature nuclear orientation measurements by 1973Si14.

[&] For [M1+E2] γ rays with no δ value, α overlaps M1 and E2.

^{*a*} For absolute intensity per 100 decays, multiply by 0.047 9.

From ENSDF

 $^{129}_{53}\mathrm{I}_{76}\text{-}6$

6