|                 | History                                     |                     |                        |
|-----------------|---------------------------------------------|---------------------|------------------------|
| Туре            | Author                                      | Citation            | Literature Cutoff Date |
| Full Evaluation | Janos Timar and Zoltan Elekes, Balraj Singh | NDS 121, 143 (2014) | 31-May-2014            |

Parent: <sup>129</sup>Ba: E=8.42 6;  $J^{\pi}=7/2^+$ ;  $T_{1/2}=2.135$  h 10;  $Q(\varepsilon)=2436$  11;  $\%\varepsilon+\%\beta^+$  decay $\approx100.0$ 

<sup>129</sup>Ba-Q( $\varepsilon$ ): From 2012Wa38.

<sup>129</sup>Ba-E,  $J^{\pi}$ ,  $T_{1/2}$ : From <sup>129</sup>Ba Adopted Levels.

 $^{129}$ Ba-% $\varepsilon$ +% $\beta^+$  decay: % $\beta^- \approx 100$  assumed; %IT is unknown.

- The decay schemes of the g.s. and isomer of <sup>129</sup>Cs seem complex, especially for the isomer decay. First level scheme was proposed in 1970Is04, later expanded by 1972Ta02 and 1973Is04. First attempt to tentatively separate the decay schemes was made in 1972-NDS (1972Ho55). Based on detailed  $\gamma\gamma$  coincidences with two Ge detectors and producing the source in different reactions producing different composition of low-spin and high-spin activities, 1983TaZI present evidence for two separate decay schemes, which are adopted here, although labeled as tentative by 1983TaZI. For the isomer decay, the gamma-ray energies and the decay scheme are almost identical to those given in 1973Is04. There is good agreement of gamma-ray energies between 1973Is04 (and 1983TaZI) and 1972Ta02, but a large number of differences exist in the placement of transitions and levels. The evaluators prefer to adopt level schemes from 1983TaZI and 1973Is04 due to better  $\gamma\gamma$  coincidence data with two Ge(Li) detectors. However, in the opinion of the evaluators, none of the studies cited above can be considered as well established, since many  $\gamma$ -ray remain either unplaced or unconfirmed. Further experiments are recommended to improve knowledge of these decay schemes using state-of-the-art detector systems and better source production methods to avoid large number of impurities present in previous studies.
- 1983TaZI: <sup>129</sup>Ba source formed in three reactions: <sup>120</sup>Sn(<sup>12</sup>C,3n)<sup>129</sup>Ba, <sup>121</sup>Sb(<sup>12</sup>C,4n)<sup>129</sup>La followed by  $\varepsilon$  decay of <sup>129</sup>La to <sup>129</sup>Ba g.s. and isomer, <sup>130</sup>Ba( $\gamma$ ,n). The other two reactions also form both the g.s. and isomer of <sup>129</sup>Ba, albeit in different proportions, thus facilitating separation of gamma rays and their intensities into separate decay schemes. Measured E $\gamma$ , I $\gamma$ ,  $\gamma\gamma$ -coin using two Ge detectors. 1983TaZI is a short note in an annual laboratory report. In July 2011, the evaluators, on communication with T. Tamura (first author of 1983TaZI), were informed that there was no further report or follow-up of this work. work reported in 1983TaZI. Note that many features of the data presented in this short report are common with those in 1973Is04.
- 1973Is04 (also 1971Is02,1970Is04): mixed (g.s. and isomer) source from  $^{133}$ Cs(p,5n); measured E $\gamma$ , I $\gamma$ ,  $\gamma\gamma$  coin with two Ge detectors, ce, ce $\gamma$ (t) with  $\pi \sqrt{2}$  air-core  $\beta$ -ray magnetic spectrometer. In 1971Is02, lifetime of 188-keV level was measured by (ce-L)( $\gamma$ )(t) method. In 1970Is04, a first detailed decay scheme of  $^{129}$ Ba was proposed with with 15 excited states and 49  $\gamma$  rays. In 1973Is04, a total of 176  $\gamma$  rays were reported with 107  $\gamma$  rays placed in a composite level scheme from both activities, thus no  $\varepsilon \beta^+$  feedings and log *ft* values were deduced. Half-lives of the two activities were measured.
- 1972Ta02: mixed source from <sup>130</sup>Ba( $\gamma$ ,n) with dominant activity from <sup>129</sup>Ba g.s. decay in contrast to other studies where dominant activity in the source material was from the decay of <sup>129</sup>Ba isomer. Measured E $\gamma$ , I $\gamma$ ,  $\gamma\gamma$  coin using Ge and NaI(TI) detector. A total of 118  $\gamma$  rays reported with 100 placed in a proposed decay scheme of <sup>129</sup>Ba. Conversion coefficients were deduced by using  $\gamma$ -ray data from this work and ce data from 1961Ar05. Since a composite decay scheme was proposed for g.s. and isomer decay of <sup>129</sup>Ba, no  $\varepsilon$ , $\beta^+$  feedings and log *ft* values were deduced. Several levels and many placements differ from those in 1983TaZI and 1973Is04. Half-lives of the two activities were measured. Low-spin activity composition in the source material was about four times higher than in the source material used in 1973Is04.
- 1961Ar05: mixed source. Measured positron spectra, ce data. A total of about 62 transition energies were deduced up to 1624 keV from K-, L- and subshell lines. Another 45 lines in the ce-energy region of 49-1143 keV with half-life of  $\approx$ 2 h were unassigned. Deduced intensities of three positron branches. Half-lives of most of the observed transitions were measured. No level scheme was proposed, however strong  $\beta^+$  branch feeding the g.s. of <sup>129</sup>Cs was indicated. Half-lives of the two activities were measured. Others:
- 1976Be11: measured lifetime of 6.5-keV level by  $\gamma(ce)(t)$ .

1966Li05: measured half-lives of the two activities from  $\gamma$  rays.

1963Ya05: measured half-life of the composite source.

1959He45: measured E $\gamma$ ,  $\beta\gamma$  coin, half-life, eight  $\gamma$  rays reported with a proposed 1450-182  $\gamma$  cascade.

1950Th08, 1950Fi11: identification and production of <sup>129</sup>Ba isotope in proton bombardment of <sup>133</sup>Cs.

### <sup>129</sup>Ba ε decay (2.135 h) **1983TaZI,1973Is04,1972Ta02** (continued)

### <sup>129</sup>Cs Levels

1959He45, based on  $\gamma\gamma$  coincidences proposed a cascade of 182-1450 cascade, establishing levels at 182 and 1632 keV. These are now defined at 189 and 1648 keV, respectively.

- In a composite level scheme for g.s. and isomer decay, 1970Is04 (earlier paper from authors of 1973Is04) reported 15 levels at 129,1, 182.3, 202.3, 214.3, 419.8, 595.9, 641.3, 683.8, 748.6, 962.6, 985.3, 1248.7, 1640.8, 1674.5, 1805.2. In their later paper 1971Is02, first excited state was indicates at 6.5 keV. Thus all level energies in in 1970Is04 should be increased upwards by 6.5 keV. A total of 49 transitions were placed amongst these levels.
- In a composite level scheme for g.s. and isomer decay, 1972Ta02 report 31 levels at 6.48, 135.6, 188.8, 208.8, 220.8, 426.8, 554.4, 603.6, 648.4, 690.5, 755.3, 969.6, 992.4, 1165.0, 1208.4, 1256.1, 1299.4, 1450.8, 1459.1, 1487.3, 1648.2, 1681.5, 1682.7, 1812.5, 1830.5, 1922.8, 1954.0, 2076.0, 2143.8, 2178.8, 2422.2. Nine of these at 1208.4, 1299.4, 1450.8, 1459.1, 1487.3, 1682.7, 2143.8, 2178.8 and 2422.3 have been omitted here since these are not confirmed in 1983TaZI and 1973Is04. The gamma rays from these levels have either not been confirmed or placed elsewhere in the level schemes based on  $\gamma\gamma$  coin data with two Ge detectors in 1983TaZI and 1973Is04.
- In a composite level scheme for g.s. and isomer decay, 1973Is04 report 24 levels at 6.54, 135.5, 188.9, 209.1, 220.8, 426.5, 551.6, 554.9, 575.4, 603.4, 648.4, 690.3, 755.2, 879.1, 969.2, 991.9, 1156.2, 1255.6, 1647.9, 1681.4, 1812.5, 1940.4, 1953.8, 2018.9. All The level scheme for the isomer decay is essentially the same as in 1983TaZI.

1983TaZI report 16 levels populated in the decay of g.s. of <sup>129</sup>Ba and 23 levels from the decay of isomer in <sup>129</sup>Ba; five low-lying levels amongst these are populated in the decay of both the activities.

| E(level) <sup>†</sup>   | $J^{\pi \ddagger}$       | $T_{1/2}$ ‡ | Comments                                                                      |
|-------------------------|--------------------------|-------------|-------------------------------------------------------------------------------|
| 0.0                     | 1/2+                     | 32.06 h 6   |                                                                               |
| 6.5450 10               | 5/2+                     | 72 ns 6     | $T_{1/2}$ : from (129.1-214.3 keV $\gamma$ )(6.54 ce(M)+ce(N))(t) (1976Be11). |
| 135.56 7                | 3/2+                     |             |                                                                               |
| 188.92 6                | 7/2+                     | 2.26 ns 6   | $T_{1/2}$ : from $\gamma(ce)(t)$ (1973Is04).                                  |
| 208.82 6                | $(5/2)^+$                |             |                                                                               |
| 220.85 6                | 3/2+                     |             |                                                                               |
| 426.49 8                | $(9/2)^+$                |             |                                                                               |
| 551.58 <sup>#</sup> 15  | $(5/2^+)$                |             |                                                                               |
| 555.13 9                | $(5/2,7/2)^+$            |             |                                                                               |
| 575.44 <sup>#</sup> 14  | $(11/2^{-})$             | 0.718 µs 21 |                                                                               |
| 603.40 7                | $(7/2^+)$                |             |                                                                               |
| 648.46 8                | $(11/2^+)$               |             |                                                                               |
| 690.33 8                | $(9/2^+)$                |             |                                                                               |
| 755.28 7                | $(5/2,7/2)^+$            |             |                                                                               |
| 879.33 <sup>#</sup> 10  | $(5/2^+, 7/2^+)$         |             |                                                                               |
| 969.25 7                | $(5/2^+, 7/2^+)$         |             |                                                                               |
| 992.09 9                | $(7/2^+, 9/2^+, 11/2^+)$ |             |                                                                               |
| 1156.27 <sup>#</sup> 12 | $(5/2^+, 7/2^+)$         |             |                                                                               |
| 1255.71 7               | $(5/2^+, 7/2^+)$         |             |                                                                               |
| 1648.04 6               | $(9/2)^+$                |             |                                                                               |
| 1681.63 9               | $(5/2^+, 7/2^+, 9/2^+)$  |             |                                                                               |
| 1812.59 8               | $(9/2)^+$                |             |                                                                               |
| 1941.05 <sup>#</sup> 13 | $(7/2^+, 9/2, 11/2^+)$   |             |                                                                               |
| 2019.15 <sup>#</sup> 19 | $(9/2.11/2^+)$           |             |                                                                               |
|                         | (-,=,=,=)                |             |                                                                               |

<sup>†</sup> From least-squares fit to  $E\gamma$  data. The 947.6 doublet  $\gamma$  from 1941 level was omitted in the fitting procedure.

<sup>‡</sup> From Adopted Levels unless otherwise stated.

<sup>#</sup> Level from 1983TaZI and 1973Is04; not reported in 1972Ta02.

# <sup>129</sup>Ba $\varepsilon$ decay (2.135 h) 1983TaZI,1973Is04,1972Ta02 (continued)

### $\varepsilon, \beta^+$ radiations

No log ft values are deduced since direct  $\varepsilon + \beta^+$  feeding to 6.5-keV level is unknown, as well as possible %IT decay is unknown.

| E(decay)              | E(level) | $\mathrm{I}\varepsilon^{\dagger \#}$ | $I(\varepsilon + \beta^+)^{\dagger \#}$ | E(decay)               | E(level) | $I(\varepsilon + \beta^+)^{\dagger \#}$ |
|-----------------------|----------|--------------------------------------|-----------------------------------------|------------------------|----------|-----------------------------------------|
| (425 11)              | 2019.15  | 0.52 4                               | 0.52 4                                  | (1689 11)              | 755.28   | 3.6 6                                   |
| (503 11)              | 1941.05  | 1.5 <i>1</i>                         | 1.5 <i>I</i>                            | (1754 11)              | 690.33   | 2.2 4                                   |
| (632 <sup>‡</sup> 11) | 1812.59  | 15.0 4                               | 15.0 4                                  | (1796 <sup>@</sup> 11) | 648.46   | 1.8 4                                   |
| (763 11)              | 1681.63  | 7.2 3                                | 7.2 3                                   | (1841 11)              | 603.40   | 3.4 5                                   |
| (796 <sup>‡</sup> 11) | 1648.04  | 59.5 <i>13</i>                       | 59.5 13                                 | (1889 11)              | 555.13   | 2.3 4                                   |
| (1288 11)             | 1156.27  |                                      | 1.7 2                                   | (1893 11)              | 551.58   | 3.0 <i>3</i>                            |
| (1475 11)             | 969.25   |                                      | 1.9 5                                   | (2018 <sup>@</sup> 11) | 426.49   | <2                                      |
| (1565 11)             | 879.33   |                                      | 1.7 4                                   |                        |          |                                         |

<sup>†</sup> Only the apparent feedings are given from intensity balance. For some levels there is non-physical negative feeding: -1.3 6 for 135.56 level, -3.7 4 for 220.85 level, -1.0 3 for 992.09 level, and -1.8 6 for 1255.7 level, implying thereby that level scheme is not known fully.

<sup>‡</sup> Most likely an allowed  $\varepsilon$  transition.

<sup>#</sup> For absolute intensity per 100 decays, multiply by  $\approx 1.0$ .

<sup>@</sup> Existence of this branch is questionable.

 $\gamma$ <sup>(129</sup>Cs)

I $\gamma$  normalization: 1983TaZI give I $\gamma$ =40 as the absolute intensity of 182.3-keV  $\gamma$  ray, assuming the isomer decays 100% by  $\varepsilon$  decay, and no  $\varepsilon$  feeding to 6.5-keV level. Both these assumption may not be valid, thus no normalization is carried out here, only apparent  $\varepsilon + \beta^+$  feedings are given from intensity balances.

| $E_{\gamma}^{\ddagger}$                                      | $I_{\gamma}^{\#}$             | E <sub>i</sub> (level) | $\mathbf{J}_i^\pi$ | $\mathbf{E}_{f}$ | $\mathbf{J}_{f}^{\pi}$ | Mult. <sup>@</sup> | δ      | $\alpha^{\dagger}$     | $I_{(\gamma+ce)}$ | Comments                                                                                                                                                                                                                                                                                                                 |
|--------------------------------------------------------------|-------------------------------|------------------------|--------------------|------------------|------------------------|--------------------|--------|------------------------|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 6.545 1                                                      |                               | 6.5450                 | 5/2+               | 0.0              | 1/2+                   | E2                 |        | 3.98×10 <sup>5</sup> 6 | 232 7             | $\alpha(L)=3.15\times10^5 5; \alpha(M)=6.82\times10^4 10;$<br>$\alpha(N)=1.355\times10^4 19; \alpha(O)=1498 21;$<br>$\alpha(P)=0.373 6$<br>$E_{\gamma}$ : from ce(L2), ce(L3) (1973Is04)<br>measurements relative to the ce(K) line of<br>182.32 5 G.<br>$I_{(\alpha teq)}$ : from total $I_{Y}$ +ce feeding the 6.5-keV |
| 53.2 <i>3</i>                                                | 0.23 2                        | 188.92                 | 7/2+               | 135.56           | 3/2+                   | E2                 |        | 18.6 5                 |                   | level, assuming no direct $\varepsilon + \beta^+$ feeding.<br>Mult.: L3/L2=1.79 28.<br>$\alpha(K)=6.53$ 12; $\alpha(L)=9.5$ 3; $\alpha(M)=2.08$ 7<br>$\alpha(N)=0.419$ 13; $\alpha(O)=0.0474$ 15;<br>$\alpha(P)=0.000174$ 4<br>Additional information 28.<br>Mult.: L1:L2:L3=14.9 29:81.9 42:100 5. Also                 |
| 73.2 3                                                       | 0.59 6                        | 208.82                 | (5/2)+             | 135.56           | 3/2+                   | M1(+E2)            | <0.3   | 2.35 16                |                   | E2 from K/L=0.5 (1961Ar05).<br>$\alpha(K)=1.93 \ 6; \ \alpha(L)=0.33 \ 8; \ \alpha(M)=0.069 \ 17$<br>$\alpha(N)=0.014 \ 4; \ \alpha(O)=0.0019 \ 4; \ \alpha(P)=7.45\times10^{-5}$<br>14<br>Additional information 30.<br>Mult., $\delta$ : from $\alpha(K)\exp=2.1$ , K/L=5.5<br>(1961Ar05).                             |
| x75.2<br>85.1 3                                              | 0.20 2<br>0.15 2<br>≤0.1      | 220.85                 | 3/2+               | 135.56           | 3/2+                   | [M1,E2]            |        | 2.4 10                 |                   | $\alpha$ (K)=1.6 4; $\alpha$ (L)=0.6 5; $\alpha$ (M)=0.13 10<br>$\alpha$ (N)=0.027 20; $\alpha$ (O)=0.0032 23;<br>$\alpha$ (P)=5.1×10 <sup>-5</sup> 3<br>Additional information 32.                                                                                                                                      |
| <sup>x</sup> 118.3<br><sup>x</sup> 119.7<br>129.14 <i>10</i> | ≤0.1<br>≤0.1<br>11.8 <i>6</i> | 135.56                 | 3/2+               | 6.5450           | 5/2+                   | M1+E2              | 0.20 5 | 0.449 10               |                   | $\alpha(K)=0.381\ 7;\ \alpha(L)=0.054\ 3;\ \alpha(M)=0.0112\ 6$<br>$\alpha(N)=0.00236\ 12;\ \alpha(O)=0.000322\ 13;$<br>$\alpha(P)=1.477\times10^{-5}\ 21$<br>Additional information 26.<br>Mult.: L1:L2:L3=100.0\ 26:13.4\ 13:5.4\ 11.<br>Other: K/L>5.6\ (1961Ar05) gives                                              |
| 135.61 20                                                    | 1.64 16                       | 135.56                 | 3/2+               | 0.0              | $1/2^{+}$              | M1(+E2)            | < 0.4  | 0.399 19               |                   | $\alpha(\text{E2/M1})<0.5.$<br>$\alpha(\text{K})=0.336$ 11; $\alpha(\text{L})=0.050$ 7; $\alpha(\text{M})=0.0103$ 15                                                                                                                                                                                                     |

4

 $^{129}_{55}\mathrm{Cs}_{74}\text{-}4$ 

|                                        |                          |                        |                        | $^{129}$ Ba $\varepsilon$ dec | cay (2.13              | 5 h) <b>1983</b>             | <b>TaZI,1973</b> | Is04,1972Ta0       | 2 (continued)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|----------------------------------------|--------------------------|------------------------|------------------------|-------------------------------|------------------------|------------------------------|------------------|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                        |                          |                        |                        |                               |                        | $\gamma$ ( <sup>129</sup> Cs | s) (continue     | d)                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| ${\rm E_{\gamma}}^{\ddagger}$          | $I_{\gamma}$ #           | E <sub>i</sub> (level) | $\mathbf{J}_i^\pi$     | $E_f$                         | $\mathrm{J}_f^\pi$     | Mult. <sup>@</sup>           | δ                | $\alpha^{\dagger}$ | Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| <sup>x</sup> 140.1                     | ≤0.1                     |                        |                        |                               |                        |                              |                  |                    | $\alpha$ (N)=0.0022 3; $\alpha$ (O)=0.00029 4; $\alpha$ (P)=1.290×10 <sup>-5</sup> 20<br>Additional information 27.<br>Mult., $\delta$ : $\alpha$ (K)exp=0.39, K/L>6.1 (1961Ar05).                                                                                                                                                                                                                                                                                                                          |
| $x^{x}$ 142.8                          | $\leq 0.1$               |                        |                        |                               |                        |                              |                  |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 149.1 <i>3</i>                         | ≤0.1<br>1.03 <i>10</i>   | 575.44                 | (11/2 <sup>-</sup> )   | 426.49                        | (9/2)+                 | (E1)                         |                  | 0.0722             | $\alpha$ (K)=0.0620 <i>10</i> ; $\alpha$ (L)=0.00810 <i>13</i> ; $\alpha$ (M)=0.001647 <i>25</i><br>$\alpha$ (N)=0.000344 <i>6</i> ; $\alpha$ (O)=4.65×10 <sup>-5</sup> <i>7</i> ; $\alpha$ (P)=2.03×10 <sup>-6</sup> <i>3</i><br>Additional information 43.                                                                                                                                                                                                                                                |
| 151.9 <i>3</i>                         | 0.31 3                   | 755.28                 | (5/2,7/2)+             | 603.40                        | (7/2 <sup>+</sup> )    | [M1+E2]                      |                  | 0.35 8             | Mult.: from Adopted Gammas.<br>$\alpha(K)=0.28 \ 4; \ \alpha(L)=0.06 \ 3; \ \alpha(M)=0.012 \ 6$<br>$\alpha(N)=0.0026 \ 12; \ \alpha(O)=0.00033 \ 14; \ \alpha(P)=9.50\times10^{-6} \ 21$<br>Additional information 56                                                                                                                                                                                                                                                                                      |
| <sup>x</sup> 155.2                     | ≤0.1                     |                        |                        |                               |                        |                              |                  |                    | Additional mormation 50.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| <sup>x</sup> 159.9                     | ≤0.1                     |                        | (0.10) ±               | 1610.01                       |                        |                              |                  |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 164.6 <i>3</i><br>177.02 <i>10</i>     | 0.73 7<br>7.5 4          | 1812.59<br>603.40      | $(9/2)^+$<br>$(7/2^+)$ | 1648.04<br>426.49             | $(9/2)^+$<br>$(9/2)^+$ | (M1)                         |                  | 0.182              | Additional information 109.<br>$\alpha(K)=0.1565\ 22;\ \alpha(L)=0.0206\ 3;\ \alpha(M)=0.00422\ 6$<br>$\alpha(N)=0.000892\ 13;\ \alpha(O)=0.0001242\ 18;$<br>$\alpha(P)=6.14\times10^{-6}\ 9$                                                                                                                                                                                                                                                                                                               |
| 182.3 <i>1</i>                         | 100 5                    | 188.92                 | 7/2+                   | 6.5450                        | 5/2+                   | M1+E2                        | 0.25 2           | 0.1718 25          | Additional information 46.<br>Mult.: $\alpha$ (K)exp=0.126, K/L=7.0 (1961Ar05).<br>$\alpha$ (K)=0.1463 21; $\alpha$ (L)=0.0203 4; $\alpha$ (M)=0.00418 8<br>$\alpha$ (N)=0.000880 16; $\alpha$ (O)=0.0001210 20;<br>$\alpha$ (P)=5.65×10 <sup>-6</sup> 8<br>Additional information 29.<br>E <sub>y</sub> : from ce data in 1973Is04.<br>Mult.: L1:L2:L3=100.0 9:9.79 42:5.41 39. Other:<br>K/L=7.0 (1961Ar05) gives $\delta$ (E2/M1)<0.5.<br>$\delta$ : 0.32 5 if penetration effect is included (1973Is04) |
| <sup>x</sup> 193.7<br>202.38 <i>10</i> | ≤0.15<br>33.7 <i>1</i> 7 | 208.82                 | (5/2)+                 | 6.5450                        | 5/2+                   | M1(+E2)                      | 0.2 2            | 0.128 4            | $\alpha$ (K)=0.1094 23; $\alpha$ (L)=0.0148 14; $\alpha$ (M)=0.0030 3<br>$\alpha$ (N)=0.00064 6; $\alpha$ (O)=8.8×10 <sup>-5</sup> 7; $\alpha$ (P)=4.25×10 <sup>-6</sup> 7<br>Additional information 31.<br>Mult.: L1:L2:L3=100.0 44:7.0 19:4.5 16. Other: K/L=6.9                                                                                                                                                                                                                                          |
| 214.30 <i>10</i>                       | 8.7 4                    | 220.85                 | 3/2+                   | 6.5450                        | 5/2+                   | M1(+E2)                      | 0.5 5            | 0.113 8            | (1961Ar05) gives $\delta$ (E2/M1)<0.7.<br>$\alpha$ (K)=0.095 4; $\alpha$ (L)=0.014 3; $\alpha$ (M)=0.0029 7<br>$\alpha$ (N)=0.00061 13; $\alpha$ (O)=8.3×10 <sup>-5</sup> 14; $\alpha$ (P)=3.59×10 <sup>-6</sup><br>11                                                                                                                                                                                                                                                                                      |
| 220.83 10                              | 5.7 3                    | 220.85                 | 3/2+                   | 0.0                           | 1/2+                   | M1(+E2)                      | <0.9             | 0.104 5            | Additional information 33.<br>Mult.: $\alpha$ (K)exp=0.097 3. Other: K/L=6.9 (1961Ar05)<br>gives $\delta$ (E2/M1)<0.75.<br>$\alpha$ (K)=0.0879 23; $\alpha$ (L)=0.0131 19; $\alpha$ (M)=0.0027 4<br>$\alpha$ (N)=0.00057 8; $\alpha$ (O)=7.7×10 <sup>-5</sup> 9; $\alpha$ (P)=3.30×10 <sup>-6</sup> 9                                                                                                                                                                                                       |

S

From ENSDF

 $^{129}_{55}\mathrm{Cs}_{74}$ -5

|                                                                  |                                           |                        |                                       | <sup>129</sup> <b>Ba</b> ε | decay (2.135 h)         | 1983TaZI,1               | 973Is04,1972       | Ta02 (continued)                                                                                                                                                                                                                                                                                                                                                  |
|------------------------------------------------------------------|-------------------------------------------|------------------------|---------------------------------------|----------------------------|-------------------------|--------------------------|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                  |                                           |                        |                                       |                            | $\underline{\gamma}(1)$ | <sup>29</sup> Cs) (conti | nued)              |                                                                                                                                                                                                                                                                                                                                                                   |
| $E_{\gamma}^{\ddagger}$                                          | $I_{\gamma}^{\#}$                         | E <sub>i</sub> (level) | $\mathbf{J}_i^\pi$                    | $E_f$                      | $\mathrm{J}_f^\pi$      | Mult. <sup>@</sup>       | $\alpha^{\dagger}$ | Comments                                                                                                                                                                                                                                                                                                                                                          |
| <sup>x</sup> 225.2<br><sup>x</sup> 228.0                         | ≤0.15<br>≤0.15                            |                        |                                       |                            |                         |                          |                    | Additional information 34.<br>Mult., $\delta$ : from $\alpha$ (K)exp=0.073, K/L=6.7 (1961Ar05).                                                                                                                                                                                                                                                                   |
| x230.4<br>238.0 2                                                | 0.35 <i>4</i><br>2.9 <i>3</i>             | 426.49                 | (9/2)+                                | 188.92                     | 7/2+                    | M1                       | 0.0819             | α(K)=0.0704 10; α(L)=0.00919 13; α(M)=0.00188 3 α(N)=0.000398 6; α(O)=5.54×10-5 8; α(P)=2.75×10-6 4 Additional information 35. Mult.: K/L=9, α(K)exp=0.098 (1961Ar05); and γ(θ) in in-beam γ ray studies.                                                                                                                                                         |
| <sup>x</sup> 243.5<br><sup>x</sup> 252.7<br>263.9 <sup>c</sup> 3 | $\leq 0.15 \\ \leq 0.15 \\ 1.20^{c} \ 12$ | 690.33                 | (9/2+)                                | 426.49                     | (9/2)+                  | (M1,E2)                  | 0.0641 <i>21</i>   | $\alpha(K)=0.0534 \ 8; \ \alpha(L)=0.0085 \ 15; \ \alpha(M)=0.0018 \ 4$<br>$\alpha(N)=0.00037 \ 7; \ \alpha(O)=4.9\times10^{-5} \ 7; \ \alpha(P)=1.93\times10^{-6} \ 16$<br>$I_{\gamma}$ : total intensity of 1.80 9 based on branching ratios in<br>Adopted Gammas.<br>Additional information 53.<br>$\delta_{12} = \alpha(K) \exp(-0.062 \ (1061 \Delta x 05))$ |
| 263.9 <sup>c</sup> 3                                             | 1.05 <sup>c</sup> 15                      | 1255.71                | $(5/2^+, 7/2^+)$                      | 992.09                     | (7/2+,9/2+,11/2+)       |                          |                    | $a = a(\mathbf{K})\exp(-0.002)$ (1901A105).                                                                                                                                                                                                                                                                                                                       |
| *284.0<br>286.2 2                                                | 0.24 <i>3</i><br>2.32 <i>23</i>           | 1255.71                | (5/2 <sup>+</sup> ,7/2 <sup>+</sup> ) | 969.25                     | (5/2+,7/2+)             | (M1,E2)                  | 0.0504 8           | $\alpha$ (K)=0.0423 <i>12</i> ; $\alpha$ (L)=0.0065 <i>9</i> ; $\alpha$ (M)=0.00135 <i>21</i><br>$\alpha$ (N)=0.00028 <i>4</i> ; $\alpha$ (O)=3.8×10 <sup>-5</sup> <i>4</i> ; $\alpha$ (P)=1.54×10 <sup>-6</sup> <i>15</i><br>Additional information 80.                                                                                                          |
| <sup>x</sup> 293.0                                               | 0.29 3                                    |                        |                                       |                            |                         | (M1,E2)                  | 0.0471             | Mult.: $\alpha(K)\exp=0.027$ (1961Ar05).<br>$\alpha(K)=0.0395$ 13; $\alpha(L)=0.0060$ 8; $\alpha(M)=0.00125$ 18<br>$\alpha(N)=0.00026$ 4; $\alpha(O)=3.5\times10^{-5}$ 4; $\alpha(P)=1.44\times10^{-6}$ 15<br>Additional information 1.                                                                                                                           |
| x297.9<br>x307.2                                                 | 0.29 <i>3</i><br>≤0.15                    |                        |                                       |                            |                         |                          |                    |                                                                                                                                                                                                                                                                                                                                                                   |
| *324.1<br>328.4 <i>3</i>                                         | 0.51 5<br>0.54 5                          | 755.28                 | (5/2,7/2)+                            | 426.49                     | (9/2)+                  | M1,E2                    | 0.0339 14          | $\alpha$ (K)=0.0286 <i>17</i> ; $\alpha$ (L)=0.0042 <i>4</i> ; $\alpha$ (M)=0.00088 <i>8</i><br>$\alpha$ (N)=0.000183 <i>15</i> ; $\alpha$ (O)=2.47×10 <sup>-5</sup> <i>12</i> ; $\alpha$ (P)=1.05×10 <sup>-6</sup> <i>13</i><br>Additional information 57.                                                                                                       |
| 334.0 <i>3</i>                                                   | 1.06 11                                   | 555.13                 | (5/2,7/2)+                            | 220.85                     | 3/2+                    | M1,E2                    | 0.0323 14          | Mult.: $\alpha(K)\exp=0.027$ (1961Ar05).<br>$\alpha(K)=0.0273$ 18; $\alpha(L)=0.0040$ 3; $\alpha(M)=0.00083$ 7<br>$\alpha(N)=0.000174$ 13; $\alpha(O)=2.35\times10^{-5}$ 10; $\alpha(P)=1.00\times10^{-6}$ 13<br>Additional information 39.<br>M k = $\alpha(K) = 0.025$ (10614.05)                                                                               |
| <sup>x</sup> 337.8                                               | 1.28 13                                   |                        |                                       |                            |                         | (M1,E2)                  | 0.0313 15          | Mult.: $\alpha(K)\exp=0.035$ (1961Ar05).<br>$\alpha(K)=0.0264$ 18; $\alpha(L)=0.0039$ 3; $\alpha(M)=0.00080$ 7<br>$\alpha(N)=0.000168$ 12; $\alpha(O)=2.27\times10^{-5}$ 9; $\alpha(P)=9.7\times10^{-7}$ 13<br>Additional information 2.                                                                                                                          |

From ENSDF

|                                            | <sup>129</sup> Ba $\varepsilon$ decay (2.135 h) 1983TaZI,1973Is04,1972Ta02 (continued) |                        |                                            |                  |                                       |        |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |
|--------------------------------------------|----------------------------------------------------------------------------------------|------------------------|--------------------------------------------|------------------|---------------------------------------|--------|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
|                                            | $\gamma$ <sup>(129</sup> Cs) (continued)                                               |                        |                                            |                  |                                       |        |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |
| $E_{\gamma}$ ‡                             | $I_{\gamma}^{\#}$                                                                      | E <sub>i</sub> (level) | $\mathrm{J}_i^\pi$                         | $E_f$            | $\mathrm{J}_f^\pi$                    | Mult.@ | $\alpha^{\dagger}$ | Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |
| 343.4 <i>3</i><br>345.3 <i>3</i>           | 0.26 <i>3</i><br>0.22 <i>2</i>                                                         | 992.09<br>555.13       | $(7/2^+, 9/2^+, 11/2^+)$<br>$(5/2, 7/2)^+$ | 648.46<br>208.82 | $(11/2^+)$<br>$(5/2)^+$               |        |                    | Additional information 73.<br>$E_{\gamma}$ : poor fit, level-energy difference=346.3.<br>Additional information 40.                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |
| 354.8 <sup>d</sup>                         | -0.15                                                                                  | 575.44                 | (11/2 <sup>-</sup> )                       | 220.85           | 3/2+                                  | [M4]   | 1.369              | α(K)=1.045 <i>15</i> ; $α(L)=0.255 $ <i>4</i> ; $α(M)=0.0558 $ <i>8</i><br>$α(N)=0.01173 $ <i>17</i> ; $α(O)=0.001542 $ <i>22</i> ; $α(P)=5.80×10^{-5} $ <i>9</i><br>$I_{\gamma}$ : 1983TaZI report≤2.7. $γ$ not seen in 1972Ta02 and<br>1961Ar05. $I_{\gamma}≤0.15$ in 1973Is04. Based on decay data<br>and in-beam $γ$ -ray studies, the evaluators consider this<br>γ ray either non-existent or very weak.                                                    |  |  |  |  |
| <sup>x</sup> 356.4<br>366.1 <sup>a</sup> 2 | ≤0.15<br>2.15 22                                                                       | 555.13                 | (5/2,7/2)+                                 | 188.92           | 7/2+                                  | M1,E2  | 0.0250 17          | $\alpha(K)=0.0211 \ 18; \ \alpha(L)=0.00305 \ 12; \ \alpha(M)=0.00063 \ 3 \ \alpha(N)=0.000132 \ 5; \ \alpha(O)=1.79\times10^{-5} \ 3; \ \alpha(P)=7.8\times10^{-7} \ 11 \ I_{\gamma}: 1.65 \ from 366 \ level and 0.50 \ from 575 \ level added. Additional information 41. Mult.: \ \alpha(K)exp=0.026 \ (1961Ar05).$                                                                                                                                           |  |  |  |  |
| 366.1 <sup>ad</sup> 2                      | 0.75.9                                                                                 | 575.44                 | (11/2 <sup>-</sup> )                       | 208.82           | (5/2)+                                | [E3]   | 0.0787             | $\alpha(K)=0.0592 \ 9; \ \alpha(L)=0.01542 \ 22; \ \alpha(M)=0.00331 \ 5$<br>$\alpha(N)=0.000681 \ 10; \ \alpha(O)=8.49\times10^{-5} \ 12; \ \alpha(P)=2.09\times10^{-6} \ 3$<br>$E_{\gamma,I_{\gamma}}$ : this $\gamma$ is not reported in any of the three in-beam $\gamma$ -ray studies, even though the 575, $(11/2^{-})$ isomer is very strongly populated in these studies. It is possible that a small component of 366 $\gamma$ belongs in this location. |  |  |  |  |
| 382.9 <i>3</i>                             | 0.75 8                                                                                 | 603.40                 | $(7/2^+)$                                  | 220.85           | 3/2+                                  |        |                    | Additional information 47.                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |
| 384.3<br>386.7 <i>3</i>                    | 0.85 9                                                                                 | 575.44                 | (11/2 <sup>-</sup> )                       | 188.92           | 7/2+                                  | (M2)   | 0.0862             | $\alpha(K)=0.0727 \ 11; \ \alpha(L)=0.01073 \ 16; \ \alpha(M)=0.00223 \ 4$<br>$\alpha(N)=0.000471 \ 7; \ \alpha(O)=6.51\times10^{-5} \ 10; \ \alpha(P)=3.12\times10^{-6}$<br>5<br>Mult.: $\alpha(K)\exp=0.116 \ (1961Ar05).$                                                                                                                                                                                                                                      |  |  |  |  |
| 392.33 10                                  | 22.2 11                                                                                | 1648.04                | (9/2)+                                     | 1255.71          | (5/2 <sup>+</sup> ,7/2 <sup>+</sup> ) | (M1)   | 0.0223             | Additional information 44.<br>$\alpha(K)=0.0192 \ 3; \ \alpha(L)=0.00246 \ 4; \ \alpha(M)=0.000503 \ 7$ $\alpha(N)=0.0001064 \ 15; \ \alpha(O)=1.487 \times 10^{-5} \ 21;$ $\alpha(P)=7.44 \times 10^{-7} \ 11$ Additional information 85.<br>Mult : $\alpha(K)$ exp=0.024, K/L=8.0 (1961Ar05).                                                                                                                                                                   |  |  |  |  |
| 394.5 2<br><sup>x</sup> 407.6              | 6.5 <i>3</i><br>0.70 <i>7</i>                                                          | 603.40                 | $(7/2^+)$                                  | 208.82           | $(5/2)^+$                             |        |                    | Additional information 48.                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |
| 414.0 2                                    | 4.4 4                                                                                  | 603.40<br>551.58       | $(7/2^+)$<br>$(5/2^+)$                     | 188.92<br>135.56 | $7/2^+$<br>$3/2^+$                    |        |                    | Additional information 49.                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |
| 420.0 <sup>C</sup> 2                       | 22.5 <sup>°</sup> 25                                                                   | 426.49                 | $(9/2)^+$                                  | 6.5450           | 5/2 <sup>+</sup>                      | (E2)   | 0.01548            | $\alpha(K)=0.01295 \ 19; \ \alpha(L)=0.00201 \ 3; \ \alpha(M)=0.000417 \ 6$                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |

|                                          | <sup>129</sup> Ba ε decay (2.135 h) 1983TaZI,1973Is04,1972Ta02 (continued) |                        |                                           |                   |                                                           |                    |                    |                                                                                                                                                                                                                                                                                                |  |  |  |  |
|------------------------------------------|----------------------------------------------------------------------------|------------------------|-------------------------------------------|-------------------|-----------------------------------------------------------|--------------------|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
|                                          | $\gamma$ <sup>(129</sup> Cs) (continued)                                   |                        |                                           |                   |                                                           |                    |                    |                                                                                                                                                                                                                                                                                                |  |  |  |  |
| $E_{\gamma}^{\ddagger}$                  | $I_{\gamma}^{\#}$                                                          | E <sub>i</sub> (level) | $\mathrm{J}_i^\pi$                        | $\mathbf{E}_{f}$  | $\mathrm{J}_f^\pi$                                        | Mult. <sup>@</sup> | $\alpha^{\dagger}$ | Comments                                                                                                                                                                                                                                                                                       |  |  |  |  |
| 420.06.2                                 | 1.26.4                                                                     | 555 12                 | (5/2 7/2)+                                | 125.56            | 2/2+                                                      |                    |                    | $ α(N)=8.70\times10^{-5} 13; α(O)=1.157\times10^{-5} 17; α(P)=4.58\times10^{-7} 7 $<br>I <sub>γ</sub> : total I <sub>γ</sub> =26.7 13 divided based on branching ratios in Adopted Gammas.<br>Additional information 36.<br>Mult.: α(K)exp=0.016, K/L=6.4 (1961Ar05).                          |  |  |  |  |
| 426.2 2                                  | 4.2° 4<br>1.55 <i>1</i> 6                                                  | 1681.63                | $(5/2^+,7/2^+,9/2^+)$                     | 1255.71           | $(5/2^+, 7/2^+)$                                          | (M1)               | 0.0181             | $\alpha$ (K)=0.01556 22; $\alpha$ (L)=0.00199 3; $\alpha$ (M)=0.000407 6<br>$\alpha$ (N)=8.61×10 <sup>-5</sup> 12; $\alpha$ (O)=1.203×10 <sup>-5</sup> 17; $\alpha$ (P)=6.03×10 <sup>-7</sup> 9<br>Additional information 98.<br>Mult.: $\alpha$ (K)exp=0.018 (1961Ar05).                      |  |  |  |  |
| <sup>x</sup> 432.3<br><sup>x</sup> 434.5 | 0.26 <i>3</i><br>0.74 <i>7</i>                                             |                        |                                           |                   |                                                           | (M1,E2)            | 0.0156 16          | $\alpha(K)=0.0133 \ 16; \ \alpha(L)=0.00185 \ 6; \ \alpha(M)=0.000381 \ 9 \ \alpha(N)=8.00\times10^{-5} \ 23; \ \alpha(O)=1.09\times10^{-5} \ 6; \ \alpha(P)=5.0\times10^{-7} \ 8 \ Additional information 3$                                                                                  |  |  |  |  |
| 437.0 <i>3</i>                           | 0.55 6                                                                     | 992.09                 | $(7/2^+, 9/2^+, 11/2^+)$                  | 555.13            | (5/2,7/2)+                                                |                    |                    | Additional information 74.                                                                                                                                                                                                                                                                     |  |  |  |  |
| 459.5 1                                  | 0.37 4                                                                     | 648.46                 | (11/2 <sup>+</sup> )                      | 188.92            | 7/2+                                                      | (E2)               | 0.01193            | $\alpha(K)=0.01003 \ 14; \ \alpha(L)=0.001517 \ 22; \ \alpha(M)=0.000314 \ 5 \\ \alpha(N)=6.55\times10^{-5} \ 10; \ \alpha(O)=8.77\times10^{-6} \ 13; \ \alpha(P)=3.58\times10^{-7} \ 5 \\ \text{Additional information 52.} $                                                                 |  |  |  |  |
| 467.9 2                                  | 4.9 5                                                                      | 603.40                 | $(7/2^+)$                                 | 135.56            | 3/2+                                                      |                    |                    | Additional information 50.                                                                                                                                                                                                                                                                     |  |  |  |  |
| <sup>x</sup> 475.5<br>481.4 1            | 0.46 5<br>9 5 5                                                            | 690 33                 | $(9/2^{+})$                               | 208 82            | $(5/2)^+$                                                 | (E2)               | 0.01046            | Additional information 4.<br>$\alpha(K)=0.00881$ 13: $\alpha(L)=0.001315$ 19: $\alpha(M)=0.000272$ 4                                                                                                                                                                                           |  |  |  |  |
| 101111                                   | 7.5 0                                                                      | 070.25                 | (7)2 )                                    | 200.02            | (3/2)                                                     |                    | 0.01010            | $\alpha(N) = 5.68 \times 10^{-5} \ 8; \ \alpha(O) = 7.62 \times 10^{-6} \ 11; \ \alpha(P) = 3.16 \times 10^{-7} \ 5$<br>Additional information 54.<br>Mult.: $\alpha(K) \exp = 0.016, \ K/L = 6.3 \ (1961 \text{Ar05}).$                                                                       |  |  |  |  |
| 491.8 <i>3</i><br>501.4 <i>1</i>         | 0.88 <i>9</i><br>6.8 <i>3</i>                                              | 1648.04<br>690.33      | (9/2) <sup>+</sup><br>(9/2 <sup>+</sup> ) | 1156.27<br>188.92 | (5/2 <sup>+</sup> ,7/2 <sup>+</sup> )<br>7/2 <sup>+</sup> | (M1)               | 0.01203            | Additional information 86.<br>$\alpha(K)=0.01037 \ 15; \ \alpha(L)=0.001322 \ 19; \ \alpha(M)=0.000270 \ 4$<br>$\alpha(N)=5.70\times10^{-5} \ 8; \ \alpha(O)=7.98\times10^{-6} \ 12; \ \alpha(P)=4.01\times10^{-7} \ 6$<br>Additional information 55.<br>Mult : $\alpha(K)=0.013 \ (1961Ar05)$ |  |  |  |  |
| <sup>x</sup> 517.6                       | 0.48 5                                                                     |                        |                                           |                   |                                                           |                    |                    |                                                                                                                                                                                                                                                                                                |  |  |  |  |
| *519.6<br>525.3 <i>3</i><br>*528 5       | 0.53 5<br>1.03 <i>10</i><br>0.86 9                                         | 1681.63                | (5/2+,7/2+,9/2+)                          | 1156.27           | (5/2+,7/2+)                                               |                    |                    | Additional information 99.                                                                                                                                                                                                                                                                     |  |  |  |  |
| 534.4 2                                  | 3.3 3                                                                      | 755.28                 | (5/2,7/2)+                                | 220.85            | 3/2+                                                      | (M1)               | 0.01028            | $\alpha(K) = 0.00886 \ 13; \ \alpha(L) = 0.001127 \ 16; \ \alpha(M) = 0.000230 \ 4$<br>$\alpha(N) = 4.86 \times 10^{-5} \ 7; \ \alpha(O) = 6.80 \times 10^{-6} \ 10; \ \alpha(P) = 3.42 \times 10^{-7} \ 5$<br>Additional information 58.                                                      |  |  |  |  |
| 542.9 2                                  | 3.9 4                                                                      | 969.25                 | (5/2+,7/2+)                               | 426.49            | (9/2)+                                                    | (M1,E2)            | 0.0087 12          | Mult.: $\alpha(K)\exp=0.011$ (1961Ar05).<br>$\alpha(K)=0.0074$ 11; $\alpha(L)=0.00100$ 9; $\alpha(M)=0.000205$ 16<br>$\alpha(N)=4.3\times10^{-5}$ 4; $\alpha(O)=6.0\times10^{-6}$ 6; $\alpha(P)=2.8\times10^{-7}$ 5<br>Additional information 68.<br>Mult.: $\alpha(K)\exp=0.013$ (1961Ar05).  |  |  |  |  |

 $\infty$ 

From ENSDF

|                                                                                                       | <sup>129</sup> Ba ε decay (2.135 h)                                                     |                                                 |                                                                                                                       |                                              | cay (2.135 h) 19                                                                                                      | 1983TaZI,1973Is04,1972Ta02 (continued) |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |
|-------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|----------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|----------------------------------------|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
|                                                                                                       |                                                                                         |                                                 |                                                                                                                       |                                              | $\gamma(^{129}$                                                                                                       | <sup>9</sup> Cs) (continu              | ed)                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |
| $E_{\gamma}^{\ddagger}$                                                                               | $I_{\gamma}^{\#}$                                                                       | E <sub>i</sub> (level)                          | $\mathbf{J}_i^\pi$                                                                                                    | $E_f$                                        | ${ m J}_f^\pi$                                                                                                        | Mult. <sup>@</sup>                     | $\alpha^{\dagger}$ | Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |
| 546.6 1                                                                                               | 11.6 6                                                                                  | 755.28                                          | (5/2,7/2)+                                                                                                            | 208.82                                       | (5/2)+                                                                                                                | (M1)                                   | 0.00972            | $\alpha(K)=0.00839 \ 12; \ \alpha(L)=0.001066 \ 15; \ \alpha(M)=0.000217 \ 3 \\ \alpha(N)=4.60\times10^{-5} \ 7; \ \alpha(O)=6.43\times10^{-6} \ 9; \ \alpha(P)=3.24\times10^{-7} \ 5 \\ Additional information \ 59. \\ Multiple \ \alpha(K)=m=0.014 \ K/L=8 \ (10614\pm05) \ (10614\pm05)$ |  |  |  |
| 549.0 2<br>551.5 2<br>556.9 2<br>566.21 <i>10</i><br>569.2 <i>3</i>                                   | $\begin{array}{c} 4.6 \ 5 \\ 4.6 \ 5 \\ 3.3 \ 3 \\ 7.6 \ 4 \\ \approx 0.10 \end{array}$ | 555.13<br>551.58<br>1812.59<br>755.28<br>575.44 | (5/2,7/2) <sup>+</sup><br>(5/2 <sup>+</sup> )<br>(9/2) <sup>+</sup><br>(5/2,7/2) <sup>+</sup><br>(11/2 <sup>-</sup> ) | 6.5450<br>0.0<br>1255.71<br>188.92<br>6.5450 | 5/2 <sup>+</sup><br>1/2 <sup>+</sup><br>(5/2 <sup>+</sup> ,7/2 <sup>+</sup> )<br>7/2 <sup>+</sup><br>5/2 <sup>+</sup> | [E3]                                   | 0.01751            | Additional information 42.<br>Additional information 42.<br>Additional information 38.<br>Additional information 110.<br>Additional information 60.<br>$\alpha(K)=0.01419\ 20;\ \alpha(L)=0.00264\ 4;\ \alpha(M)=0.000554\ 8$<br>$\alpha(N)=0.0001153\ 17;\ \alpha(O)=1.506\times10^{-5}\ 22;$<br>$\alpha(P)=5.29\times10^{-7}\ 8$<br>I <sub><math>\gamma</math></sub> : from branching in-beam $\gamma$ -ray study (1977Ch23),<br>where this $\gamma$ is seen very weakly with only 7%<br>branching ratio, consistent with its high multipolarity. In<br>1983TaZI, with I $\gamma$ =1.19, branching is 34%. In<br>1972Ta02 this $\gamma$ was not placed. Main component of<br>this $\gamma$ ray must belong somewhere else.<br>Additional information 45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |
| <sup>x</sup> 577.9                                                                                    | $\leq 0.15$                                                                             |                                                 |                                                                                                                       |                                              |                                                                                                                       |                                        |                    | Additional mormation 45.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |
| 596.78 20                                                                                             | 5.3 5                                                                                   | 603.40                                          | (7/2 <sup>+</sup> )                                                                                                   | 6.5450                                       | 5/2+                                                                                                                  | (M1,E2)                                | 0.0068 10          | $\alpha(K)=0.0059 \ 9; \ \alpha(L)=0.00078 \ 8; \ \alpha(M)=0.000160 \ 16$<br>$\alpha(N)=3.4\times10^{-5} \ 4; \ \alpha(O)=4.6\times10^{-6} \ 6; \ \alpha(P)=2.2\times10^{-7} \ 4$<br>Additional information 51.<br>Mult: $\alpha(K)=0.0106 \ K/I = 6 \ (1961\Lambda r05)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |
| 601.0 <i>3</i><br><sup><i>x</i></sup> 606.3<br><sup><i>x</i></sup> 610.0<br><sup><i>x</i></sup> 614.9 | 0.60 <i>6</i><br>0.40 <i>4</i><br>0.06 <i>1</i><br>0.55 <i>6</i>                        | 1156.27                                         | (5/2+,7/2+)                                                                                                           | 555.13                                       | (5/2,7/2)+                                                                                                            |                                        |                    | Additional information 76.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |
| $619.8 \ 3^{*}628.0^{*}631 \ 3$                                                                       | 0.35 0<br>0.75 8<br>0.31 3<br>0.38 4                                                    | 755.28                                          | (5/2,7/2)+                                                                                                            | 135.56                                       | 3/2+                                                                                                                  |                                        |                    | Additional information 61.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |
| 656.2 2<br>658.9 3<br>×660.7                                                                          | 3.8 <i>4</i><br>0.82 8<br>0.31 3                                                        | 1648.04<br>879.33                               | $(9/2)^+$<br>$(5/2^+,7/2^+)$                                                                                          | 992.09<br>220.85                             | (7/2 <sup>+</sup> ,9/2 <sup>+</sup> ,11/2 <sup>+</sup> )<br>3/2 <sup>+</sup>                                          |                                        |                    | Additional information 87.<br>Additional information 63.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |
| 670.4 <i>3</i>                                                                                        | 0.83 8                                                                                  | 879.33                                          | $(5/2^+, 7/2^+)$                                                                                                      | 208.82                                       | $(5/2)^+$                                                                                                             |                                        |                    | Additional information 64.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |
| 670.8 <sup>cc</sup> 7<br>678.8 <i>1</i>                                                               | 0.68 7<br>13.8 7                                                                        | 1648.04                                         | (9/2)+                                                                                                                | 969.25                                       | (5/2+,7/2+)                                                                                                           | (M1)                                   | 0.00574            | $\alpha(K)=0.00496\ 7;\ \alpha(L)=0.000626\ 9;\ \alpha(M)=0.0001275\ 18$<br>$\alpha(N)=2.70\times10^{-5}\ 4;\ \alpha(O)=3.78\times10^{-6}\ 6;\ \alpha(P)=1.91\times10^{-7}\ 3$<br>Additional information 88.<br>Mult.: $\alpha(K)$ exp=0.0075, K/L=6.5 (1961Ar05).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |
| <sup>x</sup> 684.4 7                                                                                  | 0.65 7                                                                                  |                                                 |                                                                                                                       |                                              |                                                                                                                       |                                        |                    | Additional information 6.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |

From ENSDF

 $^{129}_{55}\mathrm{Cs}_{74}$ -9

<sup>129</sup><sub>55</sub>Cs<sub>74</sub>-9

|                         | <sup>129</sup> Ba ε decay (2.135 h) 1983TaZI,1973Is04,1972Ta02 (continued) |                        |                         |                  |                                 |                          |                                                                                                                                                                          |  |  |  |  |  |
|-------------------------|----------------------------------------------------------------------------|------------------------|-------------------------|------------------|---------------------------------|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
|                         |                                                                            |                        |                         |                  | $\gamma$ <sup>(129</sup> Cs) (c | continued)               |                                                                                                                                                                          |  |  |  |  |  |
| $E_{\gamma}^{\ddagger}$ | $I_{\gamma}^{\#}$                                                          | E <sub>i</sub> (level) | ${\rm J}_i^\pi$         | $\mathrm{E}_{f}$ | $\mathrm{J}_f^\pi$              | Mult.@                   | Comments                                                                                                                                                                 |  |  |  |  |  |
| <sup>x</sup> 685.7      | 0.76 8                                                                     |                        |                         |                  |                                 |                          |                                                                                                                                                                          |  |  |  |  |  |
| 689.2 2                 | 4.2 4                                                                      | 1681.63                | $(5/2^+, 7/2^+, 9/2^+)$ | 992.09           | $(7/2^+, 9/2^+, 11/2^+)$        |                          | Additional information 100.                                                                                                                                              |  |  |  |  |  |
| 690.3 2                 | 4.2 4                                                                      | 879.33                 | $(5/2^+, 7/2^+)$        | 188.92           | 7/2+                            |                          | Additional information 65.                                                                                                                                               |  |  |  |  |  |
| 700.6.2                 | 0.295<br>273                                                               | 1255 71                | $(5/2^+ 7/2^+)$         | 555 13           | $(5/2, 7/2)^+$                  |                          | Additional information 81                                                                                                                                                |  |  |  |  |  |
| <sup>x</sup> 706.0      | 0.51 5                                                                     | 1255.71                | (3/2 ,//2 )             | 555.15           | (3/2,7/2)                       |                          |                                                                                                                                                                          |  |  |  |  |  |
| 712.1 2                 | 2.9 3                                                                      | 1681.63                | $(5/2^+, 7/2^+, 9/2^+)$ | 969.25           | $(5/2^+, 7/2^+)$                |                          | Additional information 101.                                                                                                                                              |  |  |  |  |  |
| <sup>x</sup> 713.5      | 0.31 3                                                                     |                        |                         |                  |                                 |                          |                                                                                                                                                                          |  |  |  |  |  |
| 730.2 3                 | 0.52.5                                                                     | 1156.27                | $(5/2^+, 7/2^+)$        | 426.49           | $(9/2)^+$                       |                          | Additional information 77.                                                                                                                                               |  |  |  |  |  |
| 744 4 3                 | 0.55 5                                                                     | 870 33                 | $(5/2^+, 7/2^+)$        | 135 56           | 3/2+                            |                          | Additional information 66                                                                                                                                                |  |  |  |  |  |
| $748.5^{b}$             | $60^{b}3$                                                                  | 755.28                 | $(5/2, 7/2)^+$          | 6 5 4 5 0        | 5/2+                            | (M1 E2)                  | Additional information 62                                                                                                                                                |  |  |  |  |  |
| 740.3 2                 | 0.9 5                                                                      | 755.26                 | (3/2,1/2)               | 0.5450           | 5/2                             | (111,122)                | E <sub><math>\gamma</math></sub> : placement from 1972Ta02 and 1973Is04; not given in<br>level-scheme figure 1 of 1983TaZI.<br>Mult.: $\alpha$ (K)exp=0.0064 (1961Ar05). |  |  |  |  |  |
| 748.5 <sup>b</sup> 2    | 6.9 <sup>b</sup> 3                                                         | 969.25                 | $(5/2^+, 7/2^+)$        | 220.85           | 3/2+                            |                          |                                                                                                                                                                          |  |  |  |  |  |
| 759.9 2                 | 1.33 13                                                                    | 969.25                 | $(5/2^+, 7/2^+)$        | 208.82           | $(5/2)^+$                       |                          | Additional information 69.                                                                                                                                               |  |  |  |  |  |
| <sup>x</sup> 761.7      | 0.20 2                                                                     |                        |                         |                  |                                 |                          |                                                                                                                                                                          |  |  |  |  |  |
| <sup>x</sup> 766.4      | 0.31 3                                                                     | 1649.04                | $(0/2)^{+}$             | 970 22           | (5/2+7/2+)                      | (1)                      | Additional information 80                                                                                                                                                |  |  |  |  |  |
| /08.8 2                 | 2.95 30                                                                    | 1048.04                | $(9/2)^{-1}$            | 879.55           | $(5/2^{+}, 7/2^{+})$            | $(\mathbf{M}\mathbf{I})$ | Additional information 89.<br>Mult : $\alpha(K)$ evp=0.0053 (1961 Ar05)                                                                                                  |  |  |  |  |  |
| <sup>x</sup> 776.4      | 0.32 3                                                                     |                        |                         |                  |                                 |                          | Additional information 8.                                                                                                                                                |  |  |  |  |  |
| 780.4 2                 | 6.4 3                                                                      | 969.25                 | $(5/2^+, 7/2^+)$        | 188.92           | 7/2+                            |                          | Additional information 70.                                                                                                                                               |  |  |  |  |  |
| <sup>x</sup> 783.1      | 1.33 13                                                                    |                        |                         |                  |                                 |                          | Additional information 9.                                                                                                                                                |  |  |  |  |  |
| <sup>x</sup> 789.2      | ≤0.1                                                                       |                        |                         |                  |                                 |                          |                                                                                                                                                                          |  |  |  |  |  |
| ×792.1                  | $\leq 0.1$                                                                 |                        |                         |                  |                                 |                          |                                                                                                                                                                          |  |  |  |  |  |
| 803.2.1                 | $\leq 0.1$<br>8 5 4                                                        | 992 09                 | $(7/2^+ 9/2^+ 11/2^+)$  | 188 92           | 7/2+                            | (M1 F2)                  | Additional information 75                                                                                                                                                |  |  |  |  |  |
| 005.2 1                 | 0.5 7                                                                      | <i>))</i> 2.0)         | (1/2 ,)/2 ,11/2 )       | 100.72           | 1/2                             | (1111,122)               | Mult.: $\alpha$ (K)exp=0.0051 (1961Ar05).                                                                                                                                |  |  |  |  |  |
| <sup>x</sup> 805.2      | 0.61 6                                                                     |                        |                         |                  |                                 |                          | Additional information 10.                                                                                                                                               |  |  |  |  |  |
| <sup>x</sup> 816.3      | 0.59 6                                                                     |                        |                         |                  |                                 |                          |                                                                                                                                                                          |  |  |  |  |  |
| <sup>x</sup> 818.4      | 0.64 6                                                                     |                        |                         |                  |                                 |                          |                                                                                                                                                                          |  |  |  |  |  |
| 820.5 2<br>x822 7       | 2.8 3                                                                      | 1812.59                | (9/2)+                  | 992.09           | $(1/2^+, 9/2^+, 11/2^+)$        |                          | Additional information 111.                                                                                                                                              |  |  |  |  |  |
| x826.6                  | 0.555<br>0.11 <i>1</i>                                                     |                        |                         |                  |                                 |                          |                                                                                                                                                                          |  |  |  |  |  |
| 828.9 3                 | 1.07 11                                                                    | 1255.71                | $(5/2^+, 7/2^+)$        | 426.49           | $(9/2)^+$                       |                          | Additional information 82.                                                                                                                                               |  |  |  |  |  |
| 833.5 2                 | 2.6 3                                                                      | 969.25                 | $(5/2^+, 7/2^+)$        | 135.56           | 3/2+                            |                          | Additional information 71.                                                                                                                                               |  |  |  |  |  |
| <sup>x</sup> 869.1      | 0.51 5                                                                     |                        |                         |                  |                                 |                          |                                                                                                                                                                          |  |  |  |  |  |
| 872.5 2                 | 5.3 5                                                                      | 879.33                 | $(5/2^+, 7/2^+)$        | 6.5450           | 5/2+                            | (M1,E2)                  | Additional information 67.                                                                                                                                               |  |  |  |  |  |
| r002 2                  | 0.54.4                                                                     |                        |                         |                  |                                 |                          | Mult.: $\alpha$ (K)exp=0.0041 (1961Ar05).                                                                                                                                |  |  |  |  |  |
| ~883.2                  | 0.56.0                                                                     | 1649.04                | $(0/2)^+$               | 755 20           | $(5/2,7/2)^+$                   | (M1)                     | Additional information 11.                                                                                                                                               |  |  |  |  |  |
| 072.0 1                 | <i>L</i> 1. <i>L I</i> 1                                                   | 1040.04                | (9/4)                   | 155.20           | (3/2,7/2)                       | (111)                    | Mult.: $\alpha$ (K)exp=0.0032, K/L=6.4 (1961Ar05).                                                                                                                       |  |  |  |  |  |

 $^{129}_{55}\mathrm{Cs}_{74}$ -10

From ENSDF

|                                        | <sup>129</sup> Ba ε decay (2.135 h) 1983TaZI,1973Is04,1972Ta02 (continued) |                        |                                              |                  |                          |                    |                                                                                                       |  |  |  |  |  |
|----------------------------------------|----------------------------------------------------------------------------|------------------------|----------------------------------------------|------------------|--------------------------|--------------------|-------------------------------------------------------------------------------------------------------|--|--|--|--|--|
|                                        | $\gamma(^{129}\text{Cs})$ (continued)                                      |                        |                                              |                  |                          |                    |                                                                                                       |  |  |  |  |  |
| ${\rm E_{\gamma}}^{\ddagger}$          | $I_{\gamma}^{\#}$                                                          | E <sub>i</sub> (level) | ${ m J}^{\pi}_i$                             | $\mathbf{E}_{f}$ | ${ m J}_f^\pi$           | Mult. <sup>@</sup> | Comments                                                                                              |  |  |  |  |  |
| <sup>x</sup> 911.1                     | 0.30 3                                                                     |                        |                                              |                  |                          |                    |                                                                                                       |  |  |  |  |  |
| <sup>x</sup> 923.8 <sup>&amp;</sup> 4  | 0.45 5                                                                     |                        |                                              |                  |                          |                    |                                                                                                       |  |  |  |  |  |
| 927.0 <i>3</i>                         | 1.26 13                                                                    | 1681.63                | $(5/2^+, 7/2^+, 9/2^+)$                      | 755.28           | $(5/2,7/2)^+$            |                    | Additional information 102.                                                                           |  |  |  |  |  |
| 933.2 2                                | 4.5 5                                                                      | 1812.59                | $(9/2)^+$                                    | 879.33           | $(5/2^+, 7/2^+)$         |                    | Additional information 112.                                                                           |  |  |  |  |  |
| 935.2 2                                | 4.5 5                                                                      | 1156.27                | $(5/2^+, 7/2^+)$                             | 220.85           | 3/2+                     |                    | Additional information 78.                                                                            |  |  |  |  |  |
| 947.6 <sup>0</sup> 3                   | 0.960 10                                                                   | 1156.27                | $(5/2^+, 7/2^+)$                             | 208.82           | $(5/2)^+$                |                    | Additional information 79.                                                                            |  |  |  |  |  |
| 947.6 <sup>6</sup> 3                   | 0.96 <sup>b</sup> 10                                                       | 1941.05                | $(7/2^+, 9/2, 11/2^+)$                       | 992.09           | $(7/2^+, 9/2^+, 11/2^+)$ |                    | $E_{\gamma}$ : poor fit, level-energy difference=948.7.<br>Additional information 121.                |  |  |  |  |  |
| <sup>x</sup> 955.4                     | 0.93 9                                                                     |                        |                                              |                  |                          |                    |                                                                                                       |  |  |  |  |  |
| 957.5 2                                | 4.1 4                                                                      | 1648.04                | $(9/2)^+$                                    | 690.33           | $(9/2^+)$                |                    | Additional information 91.                                                                            |  |  |  |  |  |
| 962.6 2                                | 2.8 3                                                                      | 969.25                 | $(5/2^+, 7/2^+)$                             | 6.5450           | 5/2+                     |                    | Additional information 72.                                                                            |  |  |  |  |  |
| <sup>x</sup> 970.7 <sup>cc</sup> 7     | 0.28 3                                                                     | 1(01 (2                | (5/0+7/0+0/0+)                               | (00.22           | (0/2+)                   |                    | Additional information 12.                                                                            |  |  |  |  |  |
| 991.3 2                                | 1.62 10                                                                    | 1648.04                | $(5/2^+, 1/2^+, 9/2^+)$                      | 648.46           | $(9/2^+)$<br>$(11/2^+)$  |                    | Additional information 103.                                                                           |  |  |  |  |  |
| ×1010 2 4                              | 7.04                                                                       | 1046.04                | (9/2)                                        | 040.40           | (11/2)                   |                    | Additional information 12                                                                             |  |  |  |  |  |
| 1019.3 4                               | 0.45 3                                                                     | 2010 15                | (0/0.11/0+)                                  | 002.00           | (7/2+0/2+11/2+)          |                    | Additional information 15.                                                                            |  |  |  |  |  |
| 1026.14 3                              | 0.25 3                                                                     | 2019.15                | $(9/2,11/2^+)$<br>(5/2+7/2+)                 | 992.09           | $(1/2^+, 9/2^+, 11/2^+)$ | (M1 E2)            | $E_{\gamma}$ : $\gamma$ reported only in 19/31804.                                                    |  |  |  |  |  |
| 1034.0 1                               | 0.1 4                                                                      | 1233.71                | (3/2, 7/2)                                   | 220.83           | 5/2                      | (111,62)           | Mult : $\alpha(\mathbf{K}) \exp[-0.0024] \mathbf{K}/\mathbf{I} = 7.4 (1961 \Delta r_{05})$            |  |  |  |  |  |
| 1044.7 1                               | 13.8 7                                                                     | 1648.04                | $(9/2)^+$                                    | 603.40           | $(7/2^+)$                |                    | Additional information 93.                                                                            |  |  |  |  |  |
| 1047.1 <i>I</i>                        | 7.8 4                                                                      | 1255.71                | $(5/2^+, 7/2^+)$                             | 208.82           | $(5/2)^+$                |                    | $E_{\gamma}$ : from 1973Is04; large uncertainty of 0.6 keV in 1972Ta02.<br>Additional information 84. |  |  |  |  |  |
| <sup>x</sup> 1051.2                    | 0.40 4                                                                     |                        |                                              |                  |                          |                    |                                                                                                       |  |  |  |  |  |
| 1072.8 <i>3</i>                        | 0.75 8                                                                     | 1648.04                | $(9/2)^+$                                    | 575.44           | $(11/2^{-})$             |                    | Additional information 94.                                                                            |  |  |  |  |  |
| 1077.7 3                               | 1.40 14                                                                    | 1681.63                | $(5/2^+, 7/2^+, 9/2^+)$                      | 603.40           | $(7/2^+)$                |                    | Additional information 104.                                                                           |  |  |  |  |  |
| <sup>x</sup> 1080.7 <sup>&amp;</sup> 5 | 0.37 4                                                                     |                        |                                              |                  |                          |                    |                                                                                                       |  |  |  |  |  |
| <sup>x</sup> 1112.0 <sup>&amp;</sup> 5 | 0.48 5                                                                     |                        |                                              |                  |                          |                    |                                                                                                       |  |  |  |  |  |
| <sup>x</sup> 1115.5                    | 0.95 10                                                                    | 1010 50                |                                              |                  | (0.00)                   |                    | Additional information 14.                                                                            |  |  |  |  |  |
| 1122.3 2                               | 5.2.3                                                                      | 1812.59                | $(9/2)^{+}$                                  | 690.33           | $(9/2^+)$                |                    | Additional information 113.                                                                           |  |  |  |  |  |
| 1120.7 2                               | 2.0 3                                                                      | 1081.03                | $(3/2^{+}, 1/2^{+}, 9/2^{+})$<br>$(0/2)^{+}$ | 555.15<br>648.46 | $(3/2, 1/2)^{+}$         |                    | Additional information 105.                                                                           |  |  |  |  |  |
| x1180.2                                | 1 00 10                                                                    | 1012.39                | (9/2)                                        | 040.40           | (11/2)                   |                    | Additional information 15                                                                             |  |  |  |  |  |
| x1181.8 5                              | 0.56.6                                                                     |                        |                                              |                  |                          |                    | Additional information 16                                                                             |  |  |  |  |  |
| 1209.1 2                               | 6.7.3                                                                      | 1812.59                | $(9/2)^+$                                    | 603.40           | $(7/2^+)$                |                    | Additional information 115.                                                                           |  |  |  |  |  |
| 1221.7 2                               | 6.4 3                                                                      | 1648.04                | $(9/2)^+$                                    | 426.49           | $(9/2)^+$                |                    | Additional information 95.                                                                            |  |  |  |  |  |
|                                        |                                                                            |                        |                                              |                  |                          |                    | Mult.: $\alpha$ (K)exp=0.0016 (1961Ar05).                                                             |  |  |  |  |  |
| 1237.3 <i>3</i>                        | 0.79 8                                                                     | 1812.59                | $(9/2)^+$                                    | 575.44           | $(11/2^{-})$             |                    | Additional information 116.                                                                           |  |  |  |  |  |
| 1250.5 2                               | 1.27 13                                                                    | 1941.05                | $(7/2^+, 9/2, 11/2^+)$                       | 690.33           | $(9/2^+)$                |                    | Additional information 122.                                                                           |  |  |  |  |  |
| <sup>x</sup> 1255.6 <sup>&amp;</sup> 4 | 0.56 6                                                                     |                        |                                              |                  |                          |                    | Additional information 17.                                                                            |  |  |  |  |  |
| <sup>x</sup> 1266.4 <sup>&amp;</sup> 4 | 0.31 3                                                                     |                        |                                              |                  |                          |                    | Additional information 18.                                                                            |  |  |  |  |  |
| <sup>x</sup> 1286.0                    | 0.77 8                                                                     | 1011.0-                |                                              | < 10 1 <i>1</i>  |                          |                    | Additional information 19.                                                                            |  |  |  |  |  |
| 1292.8 2                               | 1.66 17                                                                    | 1941.05                | $(1/2^+, 9/2, 11/2^+)$                       | 648.46           | $(11/2^{+})$             |                    | Additional information 123.                                                                           |  |  |  |  |  |

From ENSDF

 $^{129}_{55}\mathrm{Cs}_{74}$ -11

|                                         |                   |                        | <sup>129</sup> <b>Ba</b> | $\varepsilon$ decay (2. | 135 h)             | 1983TaZI,1973Is04,1972Ta02 (continued)                                                                     |
|-----------------------------------------|-------------------|------------------------|--------------------------|-------------------------|--------------------|------------------------------------------------------------------------------------------------------------|
|                                         |                   |                        |                          |                         | <u> </u>           | <sup>129</sup> Cs) (continued)                                                                             |
| $E_{\gamma}^{\ddagger}$                 | $I_{\gamma}^{\#}$ | E <sub>i</sub> (level) | $\mathbf{J}_i^\pi$       | $E_f$                   | $\mathrm{J}_f^\pi$ | Comments                                                                                                   |
| <sup>x</sup> 1295.4 <sup>&amp;</sup> 4  | 0.40 4            |                        |                          |                         |                    |                                                                                                            |
| <sup>x</sup> 1302.9                     | 0.55 6            |                        |                          |                         |                    | Additional information 20.                                                                                 |
| 1370.4 3                                | 0.69 7            | 2019.15                | $(9/2,11/2^+)$           | 648.46                  | $(11/2^+)$         | Additional information 125.                                                                                |
| 1385.7 3                                | 0.58 6            | 1812.59                | $(9/2)^+$                | 426.49                  | (9/2)+             | Additional information 117.                                                                                |
| <sup>x</sup> 1421.6 <sup>&amp;</sup> 4  | 0.28 3            |                        |                          |                         |                    |                                                                                                            |
| <sup>x</sup> 1429.6 <sup>&amp;</sup> 6  | 0.13 2            |                        |                          |                         |                    | Additional information 21.                                                                                 |
| 1444.0 <i>3</i>                         | 0.57 6            | 2019.15                | $(9/2, 11/2^+)$          | 575.44                  | $(11/2^{-})$       | Additional information 126.                                                                                |
| 1459.2 <i>1</i>                         | 50.0 25           | 1648.04                | $(9/2)^+$                | 188.92                  | $7/2^{+}$          | Additional information 96.                                                                                 |
|                                         |                   |                        |                          |                         |                    | Mult.: from $\alpha$ (K)exp=4×10 <sup>-4</sup> <i>I</i> (in figure 7 of 1973Is04) suggests E1, but (M1,E2) |
|                                         |                   |                        |                          |                         |                    | from $\alpha$ (K)exp=0.0013 and K/L=6.3 (1961Ar05).                                                        |
| 1473.3 <i>3</i>                         | 0.73 7            | 1681.63                | $(5/2^+, 7/2^+, 9/2^+)$  | 208.82                  | $(5/2)^+$          | Additional information 106.                                                                                |
| 1492.4 <i>3</i>                         | 0.49 5            | 1681.63                | $(5/2^+, 7/2^+, 9/2^+)$  | 188.92                  | $7/2^{+}$          | Additional information 107.                                                                                |
| <sup>x</sup> 1553.2                     | 0.22 2            |                        |                          |                         |                    |                                                                                                            |
| 1604.0 <i>3</i>                         | 0.31 3            | 1812.59                | $(9/2)^+$                | 208.82                  | $(5/2)^+$          | Additional information 118.                                                                                |
| 1623.7 <i>1</i>                         | 11.0 6            | 1812.59                | $(9/2)^+$                | 188.92                  | 7/2+               | Additional information 119.                                                                                |
| 1641.1 <i>3</i>                         | 1.04 10           | 1648.04                | $(9/2)^+$                | 6.5450                  | 5/2+               | Additional information 97.                                                                                 |
| 1675.1 <i>3</i>                         | 0.29 3            | 1681.63                | $(5/2^+, 7/2^+, 9/2^+)$  | 6.5450                  | 5/2+               | Additional information 108.                                                                                |
| 1752.1 3                                | 0.74 7            | 1941.05                | $(7/2^+, 9/2, 11/2^+)$   | 188.92                  | 7/2+               | Additional information 124.                                                                                |
| 1805.5 3                                | 0.60 6            | 1812.59                | $(9/2)^+$                | 6.5450                  | 5/2+               | Additional information 120.                                                                                |
| <sup>x</sup> 1810.1 <sup>&amp;</sup> 4  | 0.20 2            |                        |                          |                         |                    |                                                                                                            |
| 1830.2 <i>3</i>                         | 0.03 1            | 2019.15                | $(9/2, 11/2^+)$          | 188.92                  | 7/2+               | Additional information 127.                                                                                |
| <sup>x</sup> 1890.7                     | ≤0.15             |                        |                          |                         |                    |                                                                                                            |
| <sup>x</sup> 1934.9 <sup>&amp;</sup> 5  | 0.14 2            |                        |                          |                         |                    | Additional information 22.                                                                                 |
| <sup>x</sup> 1969.6 <sup>&amp;</sup> 3  | 0.17 2            |                        |                          |                         |                    | Additional information 23.                                                                                 |
| <sup>x</sup> 2069.7 <sup>&amp;</sup> 3  | 0.28 3            |                        |                          |                         |                    | Additional information 24.                                                                                 |
| <sup>x</sup> 2287.1 <sup>&amp;</sup> 10 | 0.08 1            |                        |                          |                         |                    | Additional information 25.                                                                                 |

 $^\dagger$  Overlaps M1 and E2 values for M1+E2, or M1,E2 transitions.

<sup>‡</sup> From unweighted average of values from 1972Ta02 and 1973Is04 (or 1983TaZI). Uncertainties are provided only by 1972Ta02. In 1983TaZI, most energies are the same as in 1973Is04. Based on comparison of values in three studies, evaluators assign the uncertainties as follows:  $\Delta(E\gamma)=0.10$  keV for I $\gamma \ge 3\%$ , 0.20 keV for I $\gamma=0.5-3\%$ , and 0.3 keV or I $\gamma<0.5\%$ . Document records in the ENSDF database provide compiled E $\gamma$  values from 1973Is04, 1972Ta02, and 1961Ar05. Unplaced  $\gamma$  rays are from 1973Is04, unless otherwise stated.

<sup>#</sup> Values are from 1983TaZI relative to 100 for 182.3 $\gamma$ , i.e. each value in 1983TaZI is multiplied by a factor of 2.5. 1983TaZI quoted absolute intensities but lack of knowledge about direct  $\varepsilon$  feeding to 6.5-keV, 5/2<sup>+</sup> level does not allow normalization of the decay scheme. Uncertainties are not given by 1983TaZI. The evaluators assign the uncertainties as follows:  $\Delta(I\gamma)=5\%$  for  $I\gamma\geq5$ , 10% for  $I\gamma<5$ . There is in general poor agreement of intensities listed by 1983TaZI, 1973Is04 and 1972Ta02; with factor of 2 difference in many cases. Values are adopted here from 1983TaZI, since they probably used more efficient Ge detectors resulting in better statistics. Document records in the ENSDF database provide compiled I $\gamma$  data from 1973Is04 and 1972Ta02, and Ice(K), K/L ratios from 1961Ar05.

### <sup>129</sup>Ba ε decay (2.135 h) **1983TaZI,1973Is04,1972Ta02** (continued)

 $\gamma$ (<sup>129</sup>Cs) (continued)

- <sup>@</sup> From 1973Is04, unless otherwise noted. Values  $\alpha(K)exp$ , K/L and L-subshell ratios are from private communication to evaluator of 1996Te01 from 1973Is04. Other multipolarities are deduced by evaluators of current evaluation using I $\gamma$  values from 1973Is04 and Ice(K) and/or K/L ratios from 1961Ar05. For  $\gamma$  rays above 400 keV or so, such assignments are tentative since the agreement between deduced  $\alpha(K)exp$  values and theoretical values from BrIcc code is poor.
- <sup>&</sup> This  $\gamma$  from 1972Ta02 only.

<sup>a</sup> Multiply placed.

- <sup>b</sup> Multiply placed with undivided intensity.
- <sup>c</sup> Multiply placed with intensity suitably divided.
- <sup>d</sup> Placement of transition in the level scheme is uncertain.

 $x \gamma$  ray not placed in level scheme.

From ENSDF



<sup>129</sup><sub>55</sub>Cs<sub>74</sub>







### Decay Scheme (continued)



17