## <sup>129</sup>Cs IT decay (0.718 μs) 1978De29

|                 | History                                     |                     |                        |
|-----------------|---------------------------------------------|---------------------|------------------------|
| Туре            | Author                                      | Citation            | Literature Cutoff Date |
| Full Evaluation | Janos Timar and Zoltan Elekes, Balraj Singh | NDS 121, 143 (2014) | 31-May-2014            |

Parent: <sup>129</sup>Cs: E=575.45 5;  $J^{\pi}$ =(11/2<sup>-</sup>);  $T_{1/2}$ =0.718  $\mu$ s 21; %IT decay=100.0 1978De29: measured E $\gamma$ , I $\gamma$ , half-life, g factor.

## <sup>129</sup>Cs Levels

| E(level) <sup>†</sup> | $J^{\pi \dagger}$ | T <sub>1/2</sub> † | Comments                                                                                                                                                                       |
|-----------------------|-------------------|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0.0                   | $1/2^{+}$         | 32.06 h 6          | $\% \varepsilon + \% \beta^+ = 100$                                                                                                                                            |
| 6.57 4                | $5/2^{+}$         | 72 ns 6            |                                                                                                                                                                                |
| 135.58 4              | $3/2^{+}$         |                    |                                                                                                                                                                                |
| 188.94 5              | $7/2^{+}$         | 2.26 ns 6          |                                                                                                                                                                                |
| 209.08? 5             | $(5/2)^+$         |                    |                                                                                                                                                                                |
| 220.75? 4             | 3/2+              |                    |                                                                                                                                                                                |
| 426.49 5              | $(9/2^+)$         |                    |                                                                                                                                                                                |
| 575.45 5              | $(11/2^{-})$      | 0.718 μs 21        | %IT=100                                                                                                                                                                        |
|                       |                   |                    | $\mu = +6.55 \ 10 \ (19/8De29)$                                                                                                                                                |
|                       |                   |                    | $\mu$ : TDPAD method (19/8De29).                                                                                                                                               |
|                       |                   |                    | $T_{1/2}$ : from $\gamma\gamma(t)$ ; weighted average of 0./34 $\mu$ s 23 (19/8De29), and 0.69 $\mu$ s 3 (1977Ch23). Other: 0.73 $\mu$ s 7 (1979Ga01, same group as 1978De29). |

 $^{\dagger}$  From Adopted Levels, unless otherwise stated.

## $\gamma(^{129}\text{Cs})$

I $\gamma$  normalization: Summed transition intensity=100 for  $\gamma$  rays from 575-keV isomer.

Ν

| $E_{\gamma}^{\dagger}$         | $I_{\gamma}^{\ddagger \#}$ | E <sub>i</sub> (level) | $\mathbf{J}_i^\pi$                   | $\mathbf{E}_{f}$ | $\mathrm{J}_f^\pi$                   | Mult. <sup>†</sup> | $\delta^{\dagger}$ | $\alpha^{@}$                 | $I_{(\gamma+ce)}^{\#}$ | Comments                                                                                                                                                                                                                                                           |
|--------------------------------|----------------------------|------------------------|--------------------------------------|------------------|--------------------------------------|--------------------|--------------------|------------------------------|------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 6.55 <i>5</i><br>53.2 <i>1</i> | 0.15 2                     | 6.57<br>188.94         | 5/2 <sup>+</sup><br>7/2 <sup>+</sup> | 0.0<br>135.58    | 1/2 <sup>+</sup><br>3/2 <sup>+</sup> | E2<br>E2           |                    | 4.32×10 <sup>5</sup><br>18.6 | 189 <i>10</i>          | $\alpha$ (K)=6.53 <i>10</i> ; $\alpha$ (L)=9.52 <i>16</i> ; $\alpha$ (M)=2.08 <i>4</i><br>$\alpha$ (N)=0.419 <i>7</i> ; $\alpha$ (O)=0.0474 <i>8</i> ; $\alpha$ (P)=0.000174<br><i>3</i>                                                                           |
| 73.2 <sup>&amp;</sup> 1        |                            | 209.08?                | $(5/2)^+$                            | 135.58           | 3/2+                                 | [M1,E2]            |                    | 4.0 18                       |                        | $\alpha(K)=2.5\ 6;\ \alpha(L)=1.2\ 10;\ \alpha(M)=0.26\ 21$<br>$\alpha(N)=0.05\ 5;\ \alpha(O)=0.006\ 5;\ \alpha(P)=7.7\times10^{-5}\ 3$                                                                                                                            |
| 85.1 <sup>&amp;</sup> 1        |                            | 220.75?                | 3/2+                                 | 135.58           | 3/2+                                 | [M1,E2]            |                    | 2.4 10                       |                        | $\alpha(K)=1.6 \ 4; \ \alpha(L)=0.6 \ 5; \ \alpha(M)=0.13 \ 10$<br>$\alpha(N)=0.027 \ 20; \ \alpha(O)=0.0032 \ 23;$<br>$\alpha(P)=5.05 \times 10^{-5} \ 25$                                                                                                        |
| 129.14 9                       | 1.7 2                      | 135.58                 | 3/2+                                 | 6.57             | 5/2+                                 | M1+E2              | 0.20 5             | 0.449 9                      |                        | $\alpha(K)=0.381\ 7;\ \alpha(L)=0.054\ 3;\ \alpha(M)=0.0112\ 6$<br>$\alpha(N)=0.00236\ 12;\ \alpha(O)=0.000322\ 13;$<br>$\alpha(P)=1.477\times10^{-5}\ 21$                                                                                                         |
| 135.61 9                       | 0.24 4                     | 135.58                 | 3/2+                                 | 0.0              | 1/2+                                 | [M1,E2]            |                    | 0.51 13                      |                        | $\begin{array}{l} \alpha(\text{K}) = 0.39 \ 7; \ \alpha(\text{L}) = 0.09 \ 5; \ \alpha(\text{M}) = 0.019 \ 11 \\ \alpha(\text{N}) = 0.0040 \ 21; \ \alpha(\text{O}) = 0.00050 \ 24; \\ \alpha(\text{P}) = 1.32 \times 10^{-5} \ 5 \end{array}$                     |
| 149.05 8                       | 100 5                      | 575.45                 | (11/2 <sup>-</sup> )                 | 426.49           | (9/2+)                               | (E1)               |                    | 0.0722                       |                        | $\begin{aligned} &\alpha(K) = 0.0621 \ 9; \ \alpha(L) = 0.00811 \ 12; \\ &\alpha(M) = 0.001649 \ 24 \\ &\alpha(N) = 0.000344 \ 5; \ \alpha(O) = 4.65 \times 10^{-5} \ 7; \end{aligned}$                                                                            |
| 182.32 5                       | 68 8                       | 188.94                 | 7/2+                                 | 6.57             | 5/2+                                 | M1+E2              | 0.25 2             | 0.1718 25                    |                        | $\alpha(P)=2.03\times10^{-6} 3$<br>$\alpha(K)=0.1463 21; \ \alpha(L)=0.0203 4;  \alpha(M)=0.00417 8$<br>$\alpha(N)=0.000879 16; \ \alpha(O)=0.0001209 20;  \alpha(P)=5.65\times10^{-6} 8$                                                                          |
| 202.38 <sup>&amp;</sup> 7      |                            | 209.08?                | (5/2)+                               | 6.57             | 5/2+                                 | M1(+E2)            | 0.2 2              | 0.128 4                      |                        | $\alpha(K)=0.1094 \ 23; \ \alpha(L)=0.0148 \ 14; \\ \alpha(M)=0.0030 \ 3 \\ \alpha(N)=0.00064 \ 6; \ \alpha(O)=8.8\times10^{-5} \ 7; \\ \alpha(P)=4.25\times10^{-6} \ 7 $                                                                                          |
| 214.30 <sup>&amp;</sup> 7      |                            | 220.75?                | 3/2+                                 | 6.57             | 5/2+                                 | M1(+E2)            | 0.5 5              | 0.113 8                      |                        | $\alpha$ (K)=0.095 4; $\alpha$ (L)=0.014 3; $\alpha$ (M)=0.0029 7<br>$\alpha$ (N)=0.00061 13; $\alpha$ (O)=8.3×10 <sup>-5</sup> 14;<br>$\alpha$ (P)=3.59×10 <sup>-6</sup> 11                                                                                       |
| 220.83 <sup>&amp;</sup> 7      |                            | 220.75?                | 3/2+                                 | 0.0              | 1/2+                                 | [M1,E2]            |                    | 0.110 10                     |                        | $\begin{aligned} &\alpha(\text{K}) = 0.090 \ 5; \ \alpha(\text{L}) = 0.015 \ 5; \ \alpha(\text{M}) = 0.0032 \ 9 \\ &\alpha(\text{N}) = 0.00067 \ 18; \ \alpha(\text{O}) = 8.7 \times 10^{-5} \ 20; \\ &\alpha(\text{P}) = 3.21 \times 10^{-6} \ 16 \end{aligned}$  |
| 237.65 9                       | 12.1 12                    | 426.49                 | $(9/2^+)$                            | 188.94           | 7/2+                                 | (M1)               |                    | 0.0822                       |                        |                                                                                                                                                                                                                                                                    |
| 354.8 <sup>&amp;</sup>         |                            | 575.45                 | (11/2 <sup>-</sup> )                 | 220.75?          | 3/2+                                 | [M4]               |                    | 1.369                        |                        | $\begin{aligned} &\alpha(\mathrm{K}) = 1.045 \ 15; \ \alpha(\mathrm{L}) = 0.255 \ 4; \ \alpha(\mathrm{M}) = 0.0558 \ 8\\ &\alpha(\mathrm{N}) = 0.01173 \ 17; \ \alpha(\mathrm{O}) = 0.001542 \ 22; \\ &\alpha(\mathrm{P}) = 5.80 \times 10^{-5} \ 9 \end{aligned}$ |

 $^{129}_{55}\mathrm{Cs}_{74}$ -2

| <sup>129</sup> Cs IT decay (0.718 $\mu$ s) <b>1978De29</b> (continued) |                   |                        |                      |         |                      |                    |                |                                                                                                                                                                                                                                                                                                                    |
|------------------------------------------------------------------------|-------------------|------------------------|----------------------|---------|----------------------|--------------------|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\gamma$ <sup>(129</sup> Cs) (continued)                               |                   |                        |                      |         |                      |                    |                |                                                                                                                                                                                                                                                                                                                    |
| $E_{\gamma}^{\dagger}$                                                 | Ι <sub>γ</sub> ‡# | E <sub>i</sub> (level) | $\mathbf{J}_i^{\pi}$ | $E_f$   | $\mathbf{J}_f^{\pi}$ | Mult. <sup>†</sup> | α <sup>@</sup> | Comments                                                                                                                                                                                                                                                                                                           |
|                                                                        |                   |                        |                      |         |                      |                    |                | $E_{\gamma}$ : $\gamma$ reported only by 1983TaZI in $\varepsilon$ decay with an upper limit of intensity. It is neither seen in any other decay study (1972Ta02, 1973Is04) nor in in-beam $\gamma$ -ray data; thus it is considered as questionable by the evaluators.                                            |
| 365.86 <sup>&amp;</sup> 8                                              |                   | 575.45                 | (11/2 <sup>-</sup> ) | 209.08? | (5/2)+               | [E3]               | 0.0789         | $\alpha(K)=0.0594 \ 9; \ \alpha(L)=0.01547 \ 22; \ \alpha(M)=0.00332 \ 5$<br>$\alpha(N)=0.000683 \ 10; \ \alpha(O)=8.52\times10^{-5} \ 12; \ \alpha(P)=2.10\times10^{-6} \ 3$<br>$E_{\gamma}: \ \gamma \text{ not reported in in-beam } \gamma \text{-ray data; } B(E_3)(W.u.)=400 \ 50 \text{ is a factor of } 4$ |
| 386.7 1                                                                | 64 5              | 575.45                 | $(11/2^{-})$         | 188.94  | 7/2+                 | [M2]               | 0.0862         | larger than RUL, thus this transition is considered suspect.<br>$\alpha(K)=0.0727 II; \alpha(L)=0.01073 I5; \alpha(M)=0.00223 4$                                                                                                                                                                                   |
| 419.83 7                                                               | 94 7              | 426.49                 | $(9/2^+)$            | 6.57    | 5/2 <sup>+</sup>     |                    |                | $\alpha(N)=0.000471$ 7; $\alpha(O)=6.51\times10^{-5}$ 10; $\alpha(P)=3.12\times10^{-6}$ 5                                                                                                                                                                                                                          |
| 569.3 1                                                                | 12.7 18           | 575.45                 | $(11/2^{-})$         | 6.57    | 5/2+                 | [E3]               | 0.01750        |                                                                                                                                                                                                                                                                                                                    |

<sup>†</sup> From Adopted dataset for <sup>129</sup>Cs.

<sup>‡</sup> Branching ratios of  $\gamma$  rays from 575-keV isomer taken from Adopted dataset. Based on these values, intensities for  $\gamma$  rays from lower levels are deduced. <sup>#</sup> For absolute intensity per 100 decays, multiply by 0.526 20. <sup>@</sup> Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on  $\gamma$ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

<sup>&</sup> Placement of transition in the level scheme is uncertain.

 $\boldsymbol{\omega}$ 

 $^{129}_{55}Cs_{74}$ -3

