¹²⁷**I**(α ,2**n** γ) **1977Ch23**

	History		
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Janos Timar and Zoltan Elekes, Balraj Singh	NDS 121, 143 (2014)	31-May-2014

1977Ch23: E=28 MeV, natural target, γ , $\gamma\gamma$, $\gamma\gamma$ (t)-coin, $\gamma(\theta)$, $\gamma(t)$, excitation function. Others:

1979Ga01 (also 1979GaZP thesis): high-spin levels in ¹²⁹Cs studied using ¹²⁷I(α ,2n γ), ¹²⁶Te(⁶Li,3n γ) and ¹²²Sn(¹⁰B,3n γ) reactions, but no data are presented, except that for half-life of 575-keV isomer.

1978De29: E=22 MeV; measured spin rotation in $\gamma(\theta,H,t)$. deduced g and half-life for 575-keV isomer.

¹²⁹Cs Levels

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	Comments
0.0	$1/2^{+}$		
6.55 <mark>&</mark> 5	5/2+		
188.63 ^b 21	7/2+		
208.6 ^{<i>a</i>} 3	5/2+		
426.15 22	9/2+		
575.08 [#] 22	$11/2^{-}$	0.718 µs 21	%IT=100
			$T_{1/2}$: from $\gamma\gamma(t)$; weighted average of 0.734 μ s 23 (1978De29), and 0.69 μ s 3 (1977Ch23). Other: 0.73 μ s 7 (1979Ga01, same group as 1978De29).
647.4 ^b 4	$11/2^{+}$		
689.4 ^a 3	9/2+		
1023.0# 4	$15/2^{-}$		
1031.7 4	$13/2^{+}$		
1149.7 [@] 4	$13/2^{-}$		
1277.8 ^b 5	$15/2^+$		
1337.9 ^{<i>a</i>} 5	$13/2^{+}$		
1626.8" 5	19/2-		
1690.5 5	1/2		
1095.1 - 5	(13/2)		
1/90.7223	$17/2^{+}$		
$2045.6^{\circ} 0$ 2120.3 ^{<i>a</i>} 5	$\frac{19}{2^{+}}$		
2212.8? 6	1//2		
2318.6? 6			
2348.9? 6			E(level): level not included in Adopted Levels. A 658.3γ is placed from a level at 3291 keV; and a 659.0γ from 1890 level in Adopted dataset.

 † From least-squares fit to Ey data, assuming 0.3 keV uncertainty for each y ray.

- [‡] As assigned in 1977Ch23.
- [#] Band(A): Band based on $1h_{11/2}, \alpha = -1/2$.
- [@] Band(a): Band based on $1h_{11/2}, \alpha = +1/2$.
- & Band(B): Band based on 5/2⁺.
- ^{*a*} Band(C): Band based on $5/2^+, \alpha = +1/2$.
- ^b Band(c): Band based on $5/2^+, \alpha = +1/2$.

¹²⁷I(α ,2n γ) **1977Ch23** (continued)

$$\gamma(^{129}Cs)$$

When only A_2 is given, A_4 is set to zero.

Eγ	I_{γ}	E_i (level)	\mathbf{J}_i^{π}	E_f	J_f^π	Mult. [†]	α‡	Comments
6.55 5		6.55	5/2+	0.0	1/2+			E_{γ} : from Adopted Gammas.
148.6	51	575.08	$11/2^{-}$	426.15	$9/2^{+}$	(E1)	0.0722 12	$A_2 = -0.135$
								Mult.: from $\gamma(\theta)$ and ΔJ^{π} .
182.0	100	188.63	7/2+	6.55	5/2+			$A_2 = +0.02 \ 2$
202.1	15	208.6	$5/2^{+}$	6.55	$5/2^{+}$			$A_2 = +0.10 \ 10$
237.3	24	426.15	$9/2^{+}$	188.63	$7/2^{+}$			$A_2 = +0.025$
386.6	34	575.08	$11/2^{-}$	188.63	$7/2^{+}$	[M2]	0.0864	$A_2 = -0.01 5$
419.5	87	426.15	$9/2^{+}$	6.55	$5/2^{+}$			$A_2 = +0.07 \ 3$
447.9	58	1023.0	$15/2^{-}$	575.08	$11/2^{-}$	(E2)		$A_2 = +0.28 5$
458.8	45	647.4	$11/2^{+}$	188.63	$7/2^{+}$	(E2)		$A_2 = +0.225$
480.8	11	689.4	$9/2^{+}$	208.6	$5/2^{+}$	(E2)		$A_2 = +0.26 \ 10$
500.8	5	689.4	9/2+	188.63	7/2+	D		A ₂ =-0.14 10
522.3 [#]	3	2212.8?		1690.5	$17/2^{-}$			$A_2 \approx -1$
543.4	17	1693.1	$(15/2^{-})$	1149.7	$13/2^{-}$	D		$A_2 = -0.095$
568.7	6.5	575.08	$11/2^{-}$	6.55	$5/2^{+}$	[E3]	0.0175	$A_2 = +0.06 \ 10$
574.6	19	1149.7	$13/2^{-}$	575.08	$11/2^{-}$	D+Q		$A_2 = -0.55 \ 15$
603.8	27	1626.8	19/2-	1023.0	$15/2^{-}$			
605.5	20	1031.7	$13/2^{+}$	426.15	$9/2^{+}$	(Q)		$A_2 = +0.24 \ 10$
630.4	26	1277.8	$15/2^{+}$	647.4	$11/2^{+}$	(Q)		$A_2 = +0.325$
648.5	10	1337.9	$13/2^{+}$	689.4	$9/2^{+}$	(Q)		A ₂ =+0.31 10
658.4 [#]	8.5	2348.9?		1690.5	$17/2^{-}$			A ₂ =+0.29 10
667.5	15	1690.5	$17/2^{-}$	1023.0	$15/2^{-}$	D+Q		A ₂ =-0.61 15
691.8 [#]	≈10	2318.6?		1626.8	$19/2^{-}$			$A_2 \approx -0.3$
759.0	8	1790.7	$17/2^{+}$	1031.7	$13/2^{+}$	(Q)		$\bar{A_2} = +0.34 \ 10$
767.8	19	2045.6	$19/2^{+}$	1277.8	$15/2^{+}$	(Q)		$A_2 = +0.255$
782.4	5.5	2120.3	$17/2^{+}$	1337.9	$13/2^{+}$	(Q)		$A_2 = +0.22 \ 10$

[†] Evaluators assign (E2) for positive A₂ and (M1+E2) for large negative A₂ values for E γ <500 keV or so, assuming level half-life is less than 10 ns or so. Above this E γ , (Q) and D+Q are assigned from $\gamma(\theta)$ results. See also Adopted Gammas.

[‡] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

[#] Placement of transition in the level scheme is uncertain.

 $^{129}_{55}\mathrm{Cs}_{74}$

3

¹²⁷I(α,2nγ) 1977Ch23

