$^{129}\text{La}\ \varepsilon$ decay (11.6 min) 1979Br05

	History		
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Janos Timar and Zoltan Elekes, Balraj Singh	NDS 121, 143 (2014)	31-May-2014

Parent: ¹²⁹La: E=0.0; $J^{\pi}=(3/2^+)$; $T_{1/2}=11.6 \text{ min } 2$; $Q(\varepsilon)=3739 \ 22$; $\%\varepsilon+\%\beta^+$ decay=100.0

¹²⁹La-Q(ε): From 2012Wa38. ¹²⁹La-J^{π},T_{1/2}: From ¹²⁹La Adopted Levels. 1979Br05: ¹³⁰Ba(p,2n) E=25 MeV, no chem sep; Ge γ , $\gamma\gamma$ -coin, semi ce, semi β^+ , $\gamma\beta^-$ coin, half-life. Others: 1998Ko66 (Q value=3.74 MeV 4 from $\beta\gamma$ coin data), 1963Ya05, 1963Pr02, 1963La03.

¹²⁹Ba Levels

E(level)	$J^{\pi \dagger}$	$T_{1/2}^{\dagger}$	E(level)	J^{π}
0.0	1/2+	2.23 h 11	928.59 9	1/2+
8.42 6	7/2+	2.135 h 10	1062.65 10	3/2+
110.57 5	3/2+		1068.1 <i>3</i>	(1/2,3/2,5/2)
253.76 5	3/2+		1094.96 8	$(3/2^+, 5/2^+)$
278.57 5	1/2+		1119.85 12	$1/2^{+}$
318.38 5	$1/2^{-}, 3/2^{-}$		1219.73 25	$3/2^+, 5/2^+$
457.02 6	3/2+		1258.1 <i>3</i>	(1/2, 3/2, 5/2)
459.29 9	5/2+		1389.54 9	(1/2,3/2,5/2)
542.27 8	5/2+		1439.23 6	$3/2^+, 5/2^+$
617.81 7	$(3/2^+, 5/2^+)$		1610.21 8	$(5/2^{-})$
659.97 8	5/2+		1635.40 10	$1/2^{+}$
667.77 10	(1/2,3/2,5/2)		1778.28 10	(1/2,3/2,5/2)
711.92 6	$(3/2,5/2)^+$		1804.80 18	$3/2^+, 5/2^+$
787.07 22	(1/2, 3/2, 5/2)		1866.33 9	3/2+,5/2+
849.44 9	5/2+		1990.50 12	$1/2^{+}$
888.65 6	$(3/2^+, 5/2^+)$		2071.60 17	(1/2,3/2,5/2)
906.70 9	$1/2^{-}, 3/2^{-}$		2285.31 17	(1/2, 3/2, 5/2)
911.38 <i>21</i>	(1/2,3/2,5/2)		2369.40 22	(1/2,3/2,5/2)

[†] From Adopted Levels.

ε, β^+ radiations

1979Br05 determined E β + endpoints from F-K analyses in $\gamma\beta$ + coin and deduced Q+=3720 50.

E(decay)	E(level)	$I\beta^+$ [†]	$\mathrm{I}\varepsilon^{\dagger}$	Log ft	$\mathrm{I}(\varepsilon + \beta^+)^\dagger$	Comments
(1370 22)	2369.40	0.00010 5	0.074 25	6.9 2	0.074 25	av Eβ=166.5 98; εK=0.8472 3; εL=0.11835 13; εM+=0.03308 4
(1454 22)	2285.31	0.00025 6	0.0738 21	6.95 2	0.0741 21	av Eβ=203.5 97; εK=0.8458 6; εL=0.11784 16; εM+=0.03292 5
(1667 22)	2071.60	0.0027 6	0.17 3	6.72 8	0.17 3	av Eβ=296.9 96; εK=0.8360 17; εL=0.1158 3; εM+=0.03233 9
(1749 22)	1990.50	0.0066 14	0.26 5	6.6 1	0.27 5	av Eβ=332.3 97; εK=0.8290 23; εL=0.1146 4; εM+=0.03199 11
(1873 22)	1866.33	0.011 2	0.26 5	6.6 1	0.27 5	av $E\beta$ =386.7 97; ε K=0.814 4; ε L=0.1123 5; ε M+=0.03133 14
(1934 22)	1804.80	0.0091 18	0.16 3	6.87 8	0.17 3	av $E\beta$ =413.6 97; ε K=0.805 4; ε L=0.1109 6; ε M+=0.03093 16
(1961 22)	1778.28	0.029 4	0.46 6	6.42 6	0.49 6	av $E\beta$ =425.3 97; ε K=0.800 4; ε L=0.1102 6; ε M+=0.03075 17

¹²⁹La ε decay (11.6 min) 1979Br05 (continued)

ϵ, β^+ radiations (continued)

E(decay)	E(level)	I β^+ [†]	$\mathrm{I}\varepsilon^{\dagger}$	Log ft	$\mathrm{I}(\varepsilon\!+\!\beta^+)^\dagger$	Comments
(2104 22)	1635.40	0.034 4	0.34 4	6.62 5	0.37 4	av E β =488.1 97; ε K=0.772 5; ε L=0.1061 8;
(2129 22)	1610.21	0.095 10	0.87 7	6.22 4	0.96 8	av E β =499.2 98; ε K=0.767 6; ε L=0.1053 8; ε M+=0.02936 21
(2300 22)	1439.23	0.078 10	0.44 5	6.58 6	0.52 6	av E β =575.0 98; ε K=0.723 7; ε L=0.0990 9; ε M+=0.02760 25
(2349 22)	1389.54	0.045 7	0.22 3	6.89 7	0.27 4	av E β =597.0 98; ε K=0.708 7; ε L=0.0970 10; ε M+=0.0270 3
(2481 22)	1258.1	0.016 5	0.058 20	7.5 2	0.074 25	av $E\beta$ =655.6 99; ε K=0.668 7; ε L=0.0914 10; ε M \pm =0.0255 3
(2519 22)	1219.73	0.046 9	0.15 3	7.1 <i>1</i>	0.20 4	av $E\beta$ =672.8 99; ε K=0.656 8; ε L=0.0896 10; ε M = -0.0250 3
(2619 22)	1119.85	0.12 2	0.32 4	6.83 7	0.44 6	av $E\beta$ =717.5 99; ε K=0.623 8; ε L=0.0850 11; ε M±=0.0237 3
(2644 22)	1094.96	0.24 3	0.62 7	6.56 5	0.86 9	av E β =70.0237 99; ε K=0.614 8; ε L=0.0839 11; ε M=-0.0234 3
(2671 22)	1068.1	0.014 7	0.035 18	7.8 2	0.049 25	av E β =740.8 99; ε K=0.605 8; ε L=0.0826 11; sM+=0.0230 3
(2676 22)	1062.65	0.044 12	0.11 3	7.3 1	0.15 4	av E β =743.2 99; ϵ K=0.603 8; ϵ L=0.0824 11; ϵ M+=0.0229 3
(2810 22)	928.59	0.076 17	0.14 3	7.2 1	0.22 5	av $E\beta$ =804 10; ε K=0.558 8; ε L=0.0760 11; ε M+=0.0212
(2828 22)	911.38	0.017 9	0.032 16	7.9 2	0.049 25	av E β =811 10; ε K=0.552 8; ε L=0.0752 11; ε M+=0.0210
(2832 22)	906.70	0.078 18	0.14 3	7.3 1	0.22 5	av E β =814 10; ε K=0.550 8; ε L=0.0750 11; ε M+=0.0209
(2850 22)	888.65	0.71 6	1.27 10	6.31 4	1.98 15	av E β =822 10; ε K=0.544 8; ε L=0.0742 11; ε M+=0.0207
(2890 22)	849.44	0.12 2	0.20 4	7.1 1	0.32 6	av E β =839 10; ε K=0.531 8; ε L=0.0723 11; ε M+=0.0201
(2952 22)	787.07	0.060 12	0.090 18	7.5 1	0.15 3	av E β =868 10; ε K=0.510 8; ε L=0.0695 10; ε M+=0.0193
(3027 22)	711.92	1.95 11	2.59 14	6.06 <i>3</i>	4.54 24	av $E\beta=902 \ 10; \ \varepsilon K=0.485 \ 8; \ \varepsilon L=0.0661 \ 10; \ \varepsilon M+=0.0184$
(3071 22)	667.77	0.10 3	0.12 4	7.4 2	0.22 7	av E β =922 10; ε K=0.471 7; ε L=0.0641 10; ε M+=0.0179
(3079 22)	659.97	0.78 6	0.95 7	6.50 4	1.73 13	av E β =925 10; ε K=0.469 7; ε L=0.0638 10; ε M+=0.0178
(3121 22)	617.81	0.96 8	1.11 9	6.45 4	2.07 16	av E β =945 10; ε K=0.455 7; ε L=0.0620 10; ε M+=0.0172
(3197 22)	542.27	0.17 4	0.18 4	7.3 1	0.35 8	av E β =979 10; ε K=0.432 7; ε L=0.0588 10; ε M+=0.0164
(3280 22)	459.29	0.94 9	0.86 8	6.60 5	1.80 17	av $E\beta$ =1017 10; ε K=0.408 7; ε L=0.0554 9; ε M ₁ =0.01522.25
(3282 22)	457.02	9.8 5	9.0 5	5.59 <i>3</i>	18.8 10	av $E\beta$ =1018 10; ϵK =0.407 7; ϵL =0.0553 9; ϵM =-0.01539 25
(3421 22)	318.38	0.42 13	0.32 10	7.1 2	0.74 23	av $E\beta = 1081 \ 10; \ \varepsilon K = 0.368 \ 6; \ \varepsilon L = 0.0500 \ 8;$ sM+-0.01302 23
(3460 22)	278.57	15.0 5	10.9 4	5.55 2	25.9 8	av $E\beta$ =1100 <i>11</i> ; ε K=0.358 <i>6</i> ; ε L=0.0486 <i>8</i> ; ε M+=0.01352 22
(3485 22)	253.76	3.3 3	2.3 2	6.23 5	5.6 5	av $E\beta$ =1111 <i>II</i> ; ε K=0.351 <i>6</i> ; ε L=0.0477 <i>8</i> ; ε M+=0.01328 22
(3628 22)	110.57	9.1 10	5.4 6	5.90 5	14.5 16	av E β =1177 11; ε K=0.317 6; ε L=0.0429 7; ε M+=0.01195 20
(3739 22)	0.0	11 2	5.8 10	5.89 8	17 3	av $E\beta$ =1228 <i>11</i> ; ε K=0.292 <i>5</i> ; ε L=0.0396 <i>7</i> ; ε M+=0.01102 <i>18</i>

 $I(\varepsilon + \beta^+)$: from 1979Br05 based on the growth and decay

Continued on next page (footnotes at end of table)

¹²⁹La ε decay (11.6 min) 1979Br05 (continued)

 ϵ, β^+ radiations (continued)

E(decay) E(level)

Comments

of 372γ and 411γ from decay of the daughter ¹²⁹Cs.

[†] Absolute intensity per 100 decays.

From ENSDF

$\gamma(^{129}\text{Ba})$

I γ normalization: From sum of I(γ +ce+ ε + β ⁺ to g.s.)=100 with I(ε + β ⁺) to g.s.=17% 3 (1979Br05).

Eγ	Ι _γ &	E _i (level)	J_i^π	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [#]	δ	α [@]	Comments
(8.4 2)		8.42	7/2+	0.0	1/2+	[M3]		1.05×10 ⁸ 19	α (L)=7.8×10 ⁷ 14; α (M)=2.2×10 ⁷ 4 α (N)=4.6×10 ⁶ 8; α (O)=5.9×10 ⁵ 11; α (P)=6.5×10 ³ 11 E _{γ} : deduced from energy differences of gammas to 7/2 ⁺ and 1/2 ⁺ levels
64.6 <i>1</i>	0.9 1	318.38	1/2-,3/2-	253.76	3/2+	E1		0.756	$\alpha(K)=0.641 \ 10; \ \alpha(L)=0.0920 \ 14; \ \alpha(M)=0.0189 \ 3$ $\alpha(N)=0.00398 \ 6; \ \alpha(O)=0.000572 \ 9; \ \alpha(P)=3.14\times10^{-5} \ 5$ $\alpha(L)\exp=0.14 \ 5$
85.1 ^{<i>a</i>} 2	≤0.1	542.27	5/2+	457.02	3/2+	[M1+E2]		2.5 10	$\alpha(K) = 1.6 \ 4; \ \alpha(L) = 0.7 \ 5; \ \alpha(M) = 0.15 \ 11 \\ \alpha(N) = 0.030 \ 23; \ \alpha(O) = 0.004 \ 3; \ \alpha(P) = 8.79 \times 10^{-5} \ 15$
102.3 [‡] 3	≤0.1	110.57	3/2+	8.42	7/2+	[E2]		1.78 4	α (K)=1.133 <i>19</i> ; α (L)=0.507 <i>10</i> ; α (M)=0.1108 <i>22</i> α (N)=0.0230 <i>5</i> ; α (O)=0.00305 <i>6</i> ; α (P)=5.24×10 ⁻⁵ <i>9</i>
110.5 <i>1</i>	68.5 <i>31</i>	110.57	3/2+	0.0	1/2+	M1		0.743	$\alpha(K)=0.636 \ 9; \ \alpha(L)=0.0853 \ 13; \ \alpha(M)=0.0176 \ 3 \ \alpha(N)=0.00380 \ 6; \ \alpha(O)=0.000580 \ 9; \ \alpha(P)=4.19\times10^{-5} \ 6 \ \alpha(K)=n=0.64 \ 4; \ \alpha(M)=n=0.018 \ 2$
138.7 <i>1</i>	1.6 2	457.02	3/2+	318.38	1/2-,3/2-	[E1]		0.0917	$\alpha(K) = 0.0786 \ I_2; \ \alpha(L) = 0.01042 \ I_5; \ \alpha(M) = 0.00214 \ 3 \alpha(N) = 0.000455 \ 7; \ \alpha(Q) = 6 \ 75 \times 10^{-5} \ I_2; \ \alpha(P) = 4 \ 26 \times 10^{-6} \ 6$
143.3 <i>1</i>	5.1 2	253.76	3/2+	110.57	3/2+	E2(+M1)	>1.7	0.519 25	$\alpha(K)=0.381 \ 13; \ \alpha(L)=0.109 \ 10; \ \alpha(M)=0.0234 \ 23$ $\alpha(N)=0.0049 \ 5; \ \alpha(O)=0.00067 \ 6; \ \alpha(P)=1.95\times10^{-5} \ 3$ $\alpha(K)\exp=0.49 \ 12$
168.1 <i>1</i>	5.2 2	278.57	1/2+	110.57	3/2+	E2,M1		0.27 5	$\alpha(K)=0.216 \ 19; \ \alpha(L)=0.044 \ 18; \ \alpha(M)=0.009 \ 4$ $\alpha(N)=0.0020 \ 8; \ \alpha(O)=0.00028 \ 10; \ \alpha(P)=1.25\times10^{-5} \ 5$ $\alpha(K)\exp=0.23 \ 2$
^x 173.6 <i>1</i>	2.0 4								
178.3 3	0.5 1	457.02	3/2+	278.57	1/2+	[M1+E2]		0.23 3	$\alpha(K)=0.181 \ 14; \ \alpha(L)=0.035 \ 13; \ \alpha(M)=0.007 \ 3$ $\alpha(N)=0.0016 \ 6; \ \alpha(O)=0.00023 \ 8; \ \alpha(P)=1.05\times10^{-5} \ 6$
202.9 [†] 3	0.8 3	457.02	3/2+	253.76	3/2+	[M1+E2]		0.151 14	α (K)=0.123 6; α (L)=0.022 7; α (M)=0.0047 15 α (N)=0.0010 3; α (O)=0.00014 4; α (P)=7.3×10 ⁻⁶ 5
205.6 2	1.1 2	459.29	5/2+	253.76	3/2+	[M1+E2]		0.145 13	$\alpha(K)=0.118\ 5;\ \alpha(L)=0.021\ 7;\ \alpha(M)=0.0045\ 14$ $\alpha(N)=0.0010\ 3;\ \alpha(Q)=0.00014\ 4;\ \alpha(P)=7.0\times10^{-6}\ 5$
207.9 1	1.9 4	318.38	1/2-,3/2-	110.57	3/2+	[E1]		0.0302	$ \begin{array}{l} \alpha(\mathrm{K}) = 0.0259 \ 4; \ \alpha(\mathrm{L}) = 0.00337 \ 5; \ \alpha(\mathrm{M}) = 0.000690 \ 10 \\ \alpha(\mathrm{N}) = 0.0001476 \ 21; \ \alpha(\mathrm{O}) = 2.21 \times 10^{-5} \ 4; \ \alpha(\mathrm{P}) = 1.467 \times 10^{-6} \\ 21 \end{array} $
244.8 2 253.8 <i>1</i>	0.6 <i>1</i> 32.5 <i>14</i>	787.07 253.76	(1/2,3/2,5/2) 3/2 ⁺	542.27 0.0	5/2 ⁺ 1/2 ⁺	E2		0.0777	α (K)=0.0621 9; α (L)=0.01227 18; α (M)=0.00260 4 α (N)=0.000549 8; α (O)=7.80×10 ⁻⁵ 11; α (P)=3.43×10 ⁻⁶ 5 α (K)exp=0.065 7; α (L)exp=0.013 2
254.9 [‡] 2	1.3 3	711.92	$(3/2, 5/2)^+$	457.02	3/2+				-

¹²⁹ La ε decay (11.6 min) 1979Br05 (continued)											
	$\gamma(^{129}\text{Ba})$ (continued)										
Eγ	Ι _γ &	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	${ m J}_f^\pi$	Mult. [#]	δ	α [@]	Comments		
270.7 [‡] 2 278.6 1	0.3 <i>1</i> 100	888.65 278.57	(3/2 ⁺ ,5/2 ⁺) 1/2 ⁺	617.81 0.0	(3/2 ⁺ ,5/2 ⁺) 1/2 ⁺	M1		0.0589			
307.2 ^{<i>a</i>} 2 318.4 <i>1</i>	1.4 2 8.2 5	849.44 318.38	5/2 ⁺ 1/2 ⁻ ,3/2 ⁻	542.27 0.0	5/2 ⁺ 1/2 ⁺	E1		0.00979	α (K)=0.00843 <i>12</i> ; α (L)=0.001078 <i>16</i> ; α (M)=0.000221 <i>3</i> α (N)=4.74×10 ⁻⁵ <i>7</i> ; α (O)=7.16×10 ⁻⁶ <i>10</i> ; α (P)=4.93×10 ⁻⁷ <i>7</i> α (K)exp=0.012 <i>4</i>		
$339.1\ 2$ $341.5\ 2$ $246\ 4^{\ddagger}\ 2$	0.9 2 1.2 2	617.81 659.97	$(3/2^+, 5/2^+)$ $5/2^+$ $(2/2^+, 5/2^+)$	278.57 318.38	1/2 ⁺ 1/2 ⁻ ,3/2 ⁻						
346.5 <i>1</i>	≤0.3 20.7 <i>10</i>	457.02	(3/2 ,3/2) 3/2 ⁺	110.57	3/2 ⁺	M1(+E2)	<0.4	0.0330 6	α (K)=0.0283 6; α (L)=0.00375 6; α (M)=0.000773 13 α (N)=0.000167 3; α (O)=2.55×10 ⁻⁵ 4; α (P)=1.83×10 ⁻⁶ 5		
348.7 1	6.4 6	459.29	5/2+	110.57	3/2+	M1(+E2)	<0.6	0.0322 8	α (K)exp=0.055 5 α (K)=0.0275 8; α (L)=0.00371 7; α (M)=0.000765 15 α (N)=0.000165 3; α (O)=2.51×10 ⁻⁵ 4; α (P)=1.77×10 ⁻⁶ 7 α (K)exp=0.045 18		
349.4 [‡] 2 381.5 2	0.4 2 0.4 1	667.77 659.97	(1/2,3/2,5/2) 5/2 ⁺	318.38 278.57	1/2 ⁻ ,3/2 ⁻ 1/2 ⁺						
393.5 [†] 2 406.2 <i>1</i>	0.4 2 2.0 2	711.92 659.97	$(3/2,5/2)^+$ $5/2^+$	318.38 253.76	1/2 ⁻ ,3/2 ⁻ 3/2 ⁺	M1,E2		0.0200 22	α (K)=0.0170 22; α (L)=0.00243 6; α (M)=0.000503 9 α (N)=0.0001079 24; α (O)=1.62×10 ⁻⁵ 7; α (P)=1.06×10 ⁻⁶ 19 α (K)exp=0.030 14		
414.0 <i>1</i> 431.8 2 433 3 2	0.5 2 1.6 2 1.0 2	667.77 542.27 711 92	(1/2,3/2,5/2) $5/2^+$ $(3/2,5/2)^+$	253.76 110.57 278.57	3/2 ⁺ 3/2 ⁺ 1/2 ⁺						
448.6 1	21.0 13	457.02	()/2,5/2) 3/2 ⁺	8.42	7/2+	(E2)		0.01336	$\alpha(K)=0.01117 \ 16; \ \alpha(L)=0.001738 \ 25; \ \alpha(M)=0.000363 \ 5 \\ \alpha(N)=7.74\times10^{-5} \ 11; \ \alpha(O)=1.140\times10^{-5} \ 16; \ \alpha(P)=6.65\times10^{-7} \\ 10 \\ \alpha(K)\exp=0.007 \ 4 \\ Mult.: \ \alpha(K)\exp$ allows E1 also within uncertainty, but E1		
457.0 <i>1</i>	32.5 26	457.02	3/2+	0.0	1/2+	M1,E2		0.0146 20	rejected by ΔJ^{α} . $\alpha(K)=0.0124 \ 18; \ \alpha(L)=0.00173 \ 10; \ \alpha(M)=0.000359 \ 18$ $\alpha(N)=7.7\times10^{-5} \ 5; \ \alpha(O)=1.16\times10^{-5} \ 9; \ \alpha(P)=7.8\times10^{-7} \ 15$ $\alpha(K)=0.012 \ 2$		
458.2 1	8.5 6	711.92	(3/2,5/2)+	253.76	3/2+	M1,E2		0.0145 19	$\alpha(K)=0.0123 \ I8; \ \alpha(L)=0.00172 \ I0; \ \alpha(M)=0.000357 \ I8 \\ \alpha(N)=7.7\times10^{-5} \ 5; \ \alpha(O)=1.15\times10^{-5} \ 9; \ \alpha(P)=7.7\times10^{-7} \ I5 \\ \alpha(K)=0.012 \ 4$		
507.3 [‡] 2 531.2 2	3.9 <i>4</i> 0.5 <i>2</i>	617.81 849.44	$(3/2^+, 5/2^+)$ $5/2^+$	110.57 318.38	3/2 ⁺ 1/2 ⁻ ,3/2 ⁻						

S

From ENSDF

 $^{129}_{56}\mathrm{Ba}_{73}$ -5

$\gamma(\frac{129}{Ba})$ (continued)

Eγ	Ιγ ^{&}	E _i (level)	\mathbf{J}_i^{π}	E_f	J_f^{π}
533.9 1	1.7 2	542.27	5/2+	8.42	7/2+
549.5 ^{†‡} 2	2.2 3	659.97	5/2+	110.57	3/2+
570.2 [†] 2	0.7 3	888.65	$(3/2^+, 5/2^+)$	318.38	1/2-,3/2-
588.3 1	0.4 1	906.70	1/2-,3/2-	318.38	1/2-,3/2-
601.3 ^{†‡} 2	4.1 3	711.92	$(3/2, 5/2)^+$	110.57	3/2+
609.3 2	0.9 2	617.81	$(3/2^+, 5/2^+)$	8.42	7/2+
610.1 [‡] 2	0.5 1	888.65	$(3/2^+, 5/2^+)$	278.57	1/2+
617.8 <i>1</i>	4.2 3	617.81	$(3/2^+, 5/2^+)$	0.0	$1/2^{+}$
[*] 622.0 3 628 1 2	1.0.3	906 70	1/2-3/2-	278 57	$1/2^{+}$
620.12	0.3 1	011 20	1/2, $3/2(1/2, 2/2, 5/2)$	270.57	1/2
651 5 2	122	911.38 659.97	(1/2, 3/2, 3/2) $5/2^+$	278.37 8.42	$\frac{1}{2}$ $\frac{7}{2^+}$
$653.0^{\ddagger}.2$	0.2.1	906.70	$\frac{3}{2}$ $\frac{1}{2} - \frac{3}{2}$	253.76	3/2+
674 8 2	0.21	028 50	$1/2^+$, $3/2^+$	253.76	3/2+
703 5 1	2.6.2	711 92	$(3/2, 5/2)^+$	233.70	$\frac{3}{2}$
711.9 1	0.5 1	711.92	$(3/2,5/2)^+$	0.0	$1/2^+$
738.8 1	1.1 <i>1</i>	849.44	5/2+	110.57	3/2+
744.2 [‡] 2	0.2 1	1062.65	3/2+	318.38	$1/2^{-}, 3/2^{-}$
760.6 ^{†‡} 2	≤0.3	1610.21	$(5/2^{-})$	849.44	$5/2^{+}$
771.6 2	0.3 1	1389.54	(1/2,3/2,5/2)	617.81	$(3/2^+, 5/2^+)$
776.6 [‡] 2	≤0.2	1094.96	$(3/2^+, 5/2^+)$	318.38	1/2-,3/2-
778.1 <i>1</i>	2.6 3	888.65	$(3/2^+, 5/2^+)$	110.57	3/2+
808.9 1	0.4 1	1062.65	$3/2^{+}$	253.76	3/2+
814.3 ^{†‡} 3	0.2 1	1068.1	(1/2,3/2,5/2)	253.76	3/2+
816.4 ^{†‡} 1	0.6 2	1094.96	$(3/2^+, 5/2^+)$	278.57	$1/2^{+}$
^x 831.8 2	0.6 2				
841.2 [‡] 2	0.8 2	1094.96	$(3/2^+, 5/2^+)$	253.76	3/2+
841.3 [‡] 2	1.3 2	1119.85	$1/2^{+}$	278.57	$1/2^{+}$
866.0 2	≤0.2	1119.85	1/2+	253.76	3/2+
880.2 1	1.6 2	888.65	$(3/2^+, 5/2^+)$	8.42	7/2+
888.7 1	2.0 2	888.65	$(3/2^+, 5/2^+)$	0.0	1/2+
901.3 4	0.3 1	1219.73	$3/2^+, 5/2^+$	318.38	$1/2^{-}, 3/2^{-}$
928.6 1		928.59	$1/2^+$	0.0	$1/2^+$
966.0 3	0.5 I	1219.73	$3/2^+, 5/2^+$	253.76	$3/2^{+}$
984.5 2	0.0 1	1094.90	$(3/2^{+}, 5/2^{+})$	110.57	3/2*
1004.31+3	0.3 1	1258.1	(1/2,3/2,5/2)	253.76	$\frac{3}{2^{+}}$
101/.0 /	0.91	1033.40	$1/2^{+}$ $1/2^{+}$	01/.81	$(3/2^{+}, 3/2^{+})$
1001.9 2	0.4 I 1 0 I	1990.30	$\frac{1/2}{(5/2^{-})}$	920.39 510 07	$\frac{1/2}{5/2^+}$
1071.2 2	< 0.3	1389.54	(1/2,3/2,5/2)	318.38	$1/2^{-}.3/2^{-}$
		1007101	(-, -, -, -, -, -, -)	010.00	-/- ,-/-

$\gamma(^{129}Ba)$ (continued)

Eγ	$I_{\gamma}^{\&}$	E_i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult.#
1086.5 2	1.0 1	1094.96	$(3/2^+, 5/2^+)$	8.42	$7/2^{+}$	
1095.0 <i>3</i>	0.3 1	1094.96	$(3/2^+, 5/2^+)$	0.0	$1/2^{+}$	
1119.9 [†] 2	0.3 1	1119.85	$1/2^{+}$	0.0	$1/2^{+}$	
1135.8 <i>1</i>	0.5 1	1389.54	(1/2, 3/2, 5/2)	253.76	$3/2^{+}$	
1150.9 2	0.2 1	1610.21	$(5/2^{-})$	459.29	5/2+	
1160.8 <i>1</i>	0.6 1	1439.23	$3/2^+, 5/2^+$	278.57	$1/2^{+}$	
1185.6 <i>1</i>	0.5 1	1439.23	$3/2^+, 5/2^+$	253.76	3/2+	
^x 1236.5 1	0.4 1					
1291.8 <i>1</i>	1.6 2	1610.21	$(5/2^{-})$	318.38	$1/2^{-}, 3/2^{-}$	
1321.3 ^{†‡} 2	0.3 1	1778.28	(1/2, 3/2, 5/2)	457.02	$3/2^{+}$	
1328.4 <i>1</i>	0.7 1	1439.23	$3/2^+, 5/2^+$	110.57	3/2+	
1356.4 [‡] 2	0.5 1	1610.21	(5/2-)	253.76	3/2+	
1356.6 [‡] 2	0.5 1	1635.40	$1/2^{+}$	278.57	$1/2^{+}$	
1381.8 2	0.10 5	1635.40	$1/2^{+}$	253.76	3/2+	
1409.3 <i>1</i>	0.5 1	1866.33	$3/2^+, 5/2^+$	457.02	$3/2^{+}$	
1439.2 [†] <i>1</i>	0.3 1	1439.23	3/2+,5/2+	0.0	$1/2^{+}$	
1459.7 ^{†‡} 2	0.5 1	1778.28	(1/2,3/2,5/2)	318.38	1/2-,3/2-	
1486.7 ^{†‡} <i>3</i>	≤0.2	1804.80	$3/2^+, 5/2^+$	318.38	$1/2^{-}, 3/2^{-}$	
1499.8 2	0.4 1	1778.28	(1/2, 3/2, 5/2)	278.57	$1/2^{+}$	
1524.5 ^{†‡} 3	0.4 1	1778.28	(1/2,3/2,5/2)	253.76	$3/2^{+}$	
1533.5 <i>3</i>	0.10 5	1990.50	$1/2^{+}$	457.02	3/2+	
1547.9 <i>3</i>	0.10 5	1866.33	$3/2^+, 5/2^+$	318.38	1/2-,3/2-	
1550.9 2	0.5 1	1804.80	$3/2^+, 5/2^+$	253.76	3/2+	
1587.8 2	0.3 1	1866.33	$3/2^+, 5/2^+$	278.57	$1/2^{+}$	
1610.2 2	0.3 1	1610.21	$(5/2^{-})$	0.0	$1/2^{+}$	[M2]
1672.1 3	0.10 5	1990.50	1/2+	318.38	$1/2^{-}, 3/2^{-}$	
1712.0 ^{<i>a</i>} 3	0.2 1	1990.50	$1/2^{+}$	278.57	1/2+	
1736.7 2	0.3 1	1990.50	1/2+	253.76	3/2+	
1755.6 ⁴ 2	0.10 5	1866.33	$3/2^+, 5/2^+$	110.57	3/2+	
1778.3 2	0.4 1	1778.28	(1/2, 3/2, 5/2)	0.0	$1/2^{+}$	
^1785.5 5	0.2 1	2071 (0			1.12+	
1793.0 2	0.5 1	2071.60	(1/2,3/2,5/2)	278.57	1/2+	
1866.3 2	0.2 I	1866.33	$3/2^+, 5/2^+$	0.0	1/2 '	
1910.1 2	0.5 I	2309.40	(1/2, 3/2, 5/2)	439.29	3/2' 1/2- 2/2-	
1966.9 2	≤ 0.1	2285.31	(1/2, 3/2, 3/2) $1/2^+$	318.38	$\frac{1}{2}, \frac{5}{2}$	
1990.3 3	0.2 I	2071.60	$\frac{1}{2}$	0.0	$1/2^+$	
2285.3 3	≤0.2 <0.2	2071.00	(1/2,3/2,5/2) (1/2,3/2,5/2)	0.0	$1/2^+$	
			(,,,,,=,=,=)		'	

-

 $^{129}_{56}\mathrm{Ba}_{73}$ -7

 γ (¹²⁹Ba) (continued)

- † Composite line with impurity in singles spectrum.
- [‡] Observed in $\gamma\gamma$ -coin only.
- [#] From ce data. $\alpha(\text{exp})$ were deduced from I γ data and Ice values normalized so that $\alpha(\text{K})=0.0216$ for 357.4-keV E2 transition in ¹³⁰Ba.
- [@] Overlaps M1 and E2 for M1+E2 transitions when δ not given.
- [&] For absolute intensity per 100 decays, multiply by 0.247 7.
- ^{*a*} Placement of transition in the level scheme is uncertain.
- $x \gamma$ ray not placed in level scheme.

¹²⁹La ε decay (11.6 min) 1979Br05

¹²⁹₅₆Ba₇₃

9

¹²⁹₅₆Ba₇₃-11

