	Histo	ory	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Zoltan Elekes and Janos Timar	NDS 129, 191 (2015)	28-Feb-2015

1988GoZD, 1990Be50: Reactor fast neutrons; Ge γ , linear polarization.

1978De41: Reactor fast neutrons; Ge G.

1980De07: Reactor fast neutrons; Ge γ , $\gamma(\theta)$.

The decay scheme is that proposed by 1988GoZD and 2012Hi10.

2008Hi17: E=2.0-3.3 MeV beam provided by accelerator at the University of Kentucky. Measured excitations (100 keV steps) E γ , I γ , angular distributions using a BGO Compton-suppressed n-type HPGe detector (FWHM=2.1 keV at 1.33 MeV). Measured half-lives using Doppler-shift attenuation method. Study of 2⁺ states in connection with fragmentation of mixed-symmetry excitations.

2012Hi10: A neutron beam at E=3.6 MeV provided by the University of Kentucky 7 MV electrostatic accelerator laboratory. Target=¹²⁸Te. Gamma rays detected by a Compton-suppressed n-type HPGe detector. Measured E γ , I γ , $\gamma\gamma$ -coincidence, $\gamma(\theta)$. Deduced levels, J, π , branching ratio, mixing ratio, B(M1), B(E2), Doppler-shift attenuation factor, T_{1/2}. Comparison with interacting boson model (IBM) calculations.

 α : Additional information 1.

¹²⁸Te Levels

E(level)	\mathbf{J}^{π}	$T_{1/2}^{\dagger}$	Comments
0.0	0^{+}		
743.218 17	2+		
1497 021 22	$\frac{2}{4^{+}}$		
1519.998 27	2+	1.7 ps + 8 - 4	
1811.14.3	$\frac{1}{6^{+}}$	In porto i	
1968 486 25	$1^+ 2^+ 3^+$	209 fs $+17-15$	
1978.80.3	0^+ ,2,3	1.4 ps + 12 - 8	$T_{1/2}$: from DSAM (2012Hi10).
2027 77 3	4 ⁺	0.37 ps + 19 - 10	$T_{1/2}$: from DSAM (2012Hi10).
2133.29.3	5-	0.57 p5 (1) 10	1/2. Hom Dormit (DorDinito).
2163.547.25	3+	0.57 ps + 16 - 10	
2193.48.3	2^{+}	49.9 fs 14	
2217.95.3	$\frac{1}{1^{+}}$, 2 ⁺ , 3 ⁺	0.4 ps + 6 - 5	$T_{1/2}$: from DSAM (2012Hi10).
2270.33 3	$3^+.4^+.5^+$	177 fs + 28 - 20	$T_{1/2}$: from DSAM (2012Hi10).
2308.30 4	0^+	>1.7 ps	
2337.71 5	$(7)^{-}$	1	
2352.11 3	2+	137 fs +10-7	
2395.92 3	4-		
2405.31 8	$(4^+, 5, 6^+)$		
2426.01 4	3+,4+,5+	86 fs +10-8	T _{1/2} : from DSAM (2012Hi10).
2456.75 21	, ,		E(level): only from 2012Hi10.
2482.22 7		0.20 ps + 5 - 3	E(level): only from 2012Hi10.
2487.44 <i>3</i>	3+	0.32 ps + 11 - 7	
2494.20 <i>3</i>	(3)-	236 fs +28-21	
2508.06 4	2+	0.37 ps + 6 - 5	
2516.64 6			E(level): only from 2012Hi10.
2550.52? 3	3+	0.18 ps $+4-3$	T _{1/2} : from DSAM (2012Hi10).
2571.18 4	4,5		
2587.14 22			E(level): only from 2012Hi10.
2599.00? 5			
2630.14 4	$1^+, 2^+, 3^+$	95 fs 10	T _{1/2} : from DSAM (2012Hi10).
2643.28 6		0.16 ps +5-8	
2655.2 4		*	E(level): only from 2012Hi10.
2665.31 10		0.15 ps +46-8	E(level): only from 2012Hi10.
		*	T _{1/2} : from DSAM (2012Hi10).
2701.0 3			E(level): only from 2012Hi10.

Continued on next page (footnotes at end of table)

 $^{128}_{52}$ Te₇₆-1

¹²⁸Te(n,n'γ) 1988GoZD,2008Hi17,2012Hi10 (continued)

¹²⁸Te Levels (continued)

E(level)	J^{π}	$T_{1/2}^{\dagger}$	Comments
2706 65 4	1+ 2+ 3+	80 fs 6	$T_{1/2}$: from DSAM (2012Hi10)
2712 232 4	$1^{+},2^{+},3^{+}$ $1^{+},2^{+},3^{+}$	162 fs 11	1/2. nom borna (20121110).
2718.80 12	- ,= ,0	102 10 11	E(level): only from 2012Hi10.
2736 24 13			E(level): only from 2012Hi10
2748 66 4	3+	0.71 ns + 53 - 21	$T_{1/2}$: from DSAM (2012Hi10)
2749 57 21	5	0.71 p3 155 21	F(level): only from 2012Hi10
2742.57 21	3- 4- 5- 6- 7-		
2763.97.10	5,1,5,0,7	16.6 fs 21	F(level): only from 2012Hi10
2705.77 10		10.0 15 21	$T_{1/2}$: from DSAM (2012Hi10)
2776 86 6			F(level): only from 2012Hi10
2820 71 5	$(1 2^+)$	150 fs $\pm 10 - 17$	$T_{\rm vo}$: from DSAM (2012Hi10)
2820.71 5	(1,2)	$0.29 \text{ ns} \pm 13 - 8$	$T_{1/2}$. from DSAM (2012H110).
2050.00 /		0.27 ps 115 0	F(evel): only from 2012Hi10
2851.01.6	$(4^+ 5 6^+)$	01 fs $\pm 67 - 33$	E(level). Only noni 201211110.
2861 02 17	(+,,,,,,))	<i>y</i> 1 18 ±07 <i>-</i> 55	E(level): only from 2012Hill
2860 002 8	$(1 2^{+})$	$0.28 \text{ ps} \pm 13.7$	E(revel). Only non-2012H110. Tere: from DSAM (2012H110)
2809.002 8	(1,2) 1+2+2+	0.28 ps + 15 - 7	$T_{1/2}$. Holii DSAW (2012H110).
2004.31 0	1,2,5	0.59 ps 5	$\Gamma_{1/2}$. Holli DSAWI (2012H110). E(laval): only from 2012H110
2003.02 13	5	96 18 +40-20	E(16VC1). Only 11011 2012 H110. T $from DSAM (2012)E(10)$
2001 46 7	2+	$107 f_{-}$, $20 - 24$	$1_{1/2}$: IIOIII DSAM (2012HIIO).
2891.40 /	2	18/18 + 29 - 24	$\Gamma_{1/2}$: from DSAM (2012H110).
2904.42 11		0.07 ps +48-33	E(level): only from 2012H10.
2012 79 (11 . 02 5	$I_{1/2}$: from DSAM (2012H110).
2912.78.0		1.1 ps + 23 - 3	$\Gamma_{1/2}$: from DSAM (2012H110).
2921.56 14		1.2 ps + 23 - 8	E(level): only from 2012H110.
2021.079.5	2 + 4 + 5 +		$I_{1/2}$: from DSAM (2012H110).
2931.867 3	3,4,5		E(1)),
2952.6 17		07 12 2	E(level): only from 2012H110.
2954.87 6		0.7 ps $+12-3$	E(level): only from 2012H110.
20(0.0.2			$T_{1/2}$: from DSAM (2012Hi10).
2969.0 3	a.t.		E(level): only from 2012Hi10.
2983.32? 5	3+	111 fs $+31-22$	$T_{1/2}$: from DSAM (2012Hi10).
2985.53 10		0.3 ps + 9 - 2	E(level): only from 2012Hi10.
			$T_{1/2}$: from DSAM (2012Hi10).
2997.49 15		102 fs + 20 - 21	$T_{1/2}$: from DSAM (2012H110).
			E(level): only from 2012Hi10.
2997.8 <i>3</i>			E(level): only from 2012Hi10.
3030.11 8	1,2+	0.90 ps +60-42	$T_{1/2}$: from DSAM (2012Hi10).
3038.73 13			E(level): only from 2012Hi10.
3048.45 17			E(level): only from 2012Hi10.
3054.50 10		274 fs +17–12	E(level): only from 2012Hi10.
			$T_{1/2}$: from DSAM (2012Hi10).
3067.15 6	3	274 fs +17–12	$T_{1/2}$: from DSAM (2012Hi10).
3071.60 11		130 fs +40-28	E(level): only from 2012Hi10.
			$T_{1/2}$: from DSAM (2012Hi10).
3091.1 <i>3</i>			E(level): only from 2012Hi10.
3097.6 <i>3</i>			E(level): only from 2012Hi10.
3100.42 9	1,2,3	117 fs +33-24	$T_{1/2}$: from DSAM (2012Hi10).
3101.29 9		0.21 ps +20-8	E(level): only from 2012Hi10.
			$T_{1/2}$: from DSAM (2012Hi10).
3104.40? 17		113 fs +22-17	$T_{1/2}$: from DSAM (2012Hi10).
3125.40? 5			
3135.80 23		0.24 ps +35-10	E(level): only from 2012Hi10.
			$T_{1/2}$: from DSAM (2012Hi10).
3137.43 19	2+	121 fs +29-21	$T_{1/2}$: from DSAM (2012Hi10).
3139.9 <i>3</i>	2,3		E(level): only from 2012Hi10.
3146.4 9			E(level): only from 2012Hi10.
3148.35 10		0.26 ps +12-6	$T_{1/2}$: from DSAM (2012Hi10).

Continued on next page (footnotes at end of table)

¹²⁸Te(n,n'γ) 1988GoZD,2008Hi17,2012Hi10 (continued)

¹²⁸Te Levels (continued)

E(level)	J^{π}	T _{1/2} †	Comments
			E(level): only from 2012Hi10.
3150.84 19	$(6)^{+}$		E(level): only from 2012Hi10.
3166.51 18	3-		E(level): only from 2012Hi10.
3184.84 13		51 fs 8	$T_{1/2}$: from DSAM (2012Hi10).
3188.2 4		0.10 ps + 12 - 5	$T_{1/2}$: from DSAM (2012Hi10).
		1	E(level): only from 2012Hi10.
3195.6 11			E(level): only from 2012Hi10.
3199.1 17			E(level): only from 2012Hi10.
3216.59 19		76 fs +83-35	T _{1/2} : from DSAM (2012Hi10).
			E(level): only from 2012Hi10.
3219.3 4			E(level): only from 2012Hi10.
3221.4 3			E(level): only from 2012Hi10.
3249.4 4			E(level): only from 2012Hi10.
3251.0 4			E(level): only from 2012Hi10.
3255.0 4			E(level): only from 2012Hi10.
3286.3 4			E(level): only from 2012Hi10.
3296.46? 8	$(2^+, 3, 4^+)$		
3296.9 4			E(level): only from 2012Hi10.
3303.8 4			E(level): only from 2012Hi10.
3607.42? 11			
3731.72? 7			
3838.4? 5	$(1,2^{+})$		
4063.11? 17			

 † From DSAM (2008Hi17) unless otherwise stated.

$\frac{\chi^{(127}\text{Te})}{175.274} = \frac{1}{0.223} + \frac{1}{2} + \frac$										
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $							$\gamma(^{128}\text{Te})$)		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	${\rm E_{\gamma}}^{\dagger}$	I_{γ} ‡	E _i (level)	J_i^π	E_{f}	J_f^π	Mult. [#]	$\delta^{\#@}$	α	Comments
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	175.27 4	0.22 3	2571.18	4,5	2395.92	4-	D+Q	+0.06 +7-15	0.144 1	$\alpha(K)=0.124 \ l; \ \alpha(L)=0.0160 \ 3; \ \alpha(M)=0.00317 \ 7; \ \alpha(N+)=0.00076 \ 2$
$ \begin{array}{c} ^{+24,17} 10 & 0.112 \\ 249,24 & 0.10 & 2217.95 \\ 249,24 & 287,14 \\ 249,96 \\ 2587,14 \\ 262,63 & 2 & 2.47 & 2395.92 \\ 4^{-} & 2133.29 \\ 5^{-} & M1+E2 \\ 2133.29 \\ 5^{-} & M1+E2 \\ 4^{-} & 2133.29 \\ 5^{-} & M1+E2 \\ 4^{-} & 2133.29 \\ 5^{-} & M1+E2 \\ 4^{-} & 20333 \\ 4^{-} & 1497,021 \\ 4^{+} & E2 \\ 4^{-} & 20333 \\ 4^{-} & 1497,021 \\ 4^{+} & E2 \\ 4^{-} & 20333 \\ 4^{-} & 1497,021 \\ 4^{+} & E2 \\ 4^{-} & 20333 \\ 4^{-} & 1497,021 \\ 4^{+} & E2 \\ 4^{-} & 20333 \\ 4^{-} & 2133,29 \\ 5^$	232.43 9	0.15 2	2395.92	4-	2163.547	3+	E1+M2	-0.15 +10-12	0.026 15	Mult.,o: from $\gamma(\theta)$ (2012H10). $\alpha(K)=0.022 \ 13; \ \alpha(L)=0.0030 \ 20; \ \alpha(M)=0.0006 \ 4; \ \alpha(N)=0.00012 \ 8; \ \alpha(O)=1.2\times10^{-5} \ 9$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	^x 244.77 10	0.11 2								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	249.24 9	0.10 2	2217.95	$1^+, 2^+, 3^+$	1968.486	$1^+, 2^+, 3^+$				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	249.9 6		2587.14		2337.71	$(7)^{-}$				E_{γ} : only from 2012Hi10.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	262.63 2	2.47 6	2395.92	4-	2133.29	5-	M1+E2	+0.263 19	0.0491	$\alpha(K)=0.0422 \ 6; \ \alpha(L)=0.00549 \ 9; \\ \alpha(M)=0.001097 \ 17; \ \alpha(N)=0.000217 \ 4; \\ \alpha(O)=2.33\times10^{-5} \ 4 \\ S_{12}=0.040 \ s_{12} \ S_{12}=0.00000000000000000000000000000000000$
323.46 212456.752133.295^- 2395.92 $a^{(1)} = 1,21 \times 10^{-24}$ 353.65 212749.572395.924^-D+Q $+0.06 + 7 - 6$ 0.0225 $a^{(K)} = 0.0195; a^{(L)} = 0.00244 I; a^{(M)} = 0.00048 a^{(N+)} = 0.00012$ 357.2 & 42762.063^-, 4^-, 5^-, 6^-, 7^-2405.31 $(4^+, 5, 6^+)$ $a^{(K)} = 0.112 \times 10^{-24}$ 368.16 & 0.18 32395.924^-2027.774^+E1+M2 -0.12×11 0.007×3 380.66 232776.862395.924^-2027.774^+M1+E2 $+1.18 \times 20$ $a^{(K)} = 0.0157 \times 23; a^{(L)} = 0.00190 \times 4; a^{(M)} = 0.0007 \times 3$ 380.66 232776.862426.013^+, 4^+, 5^+2027.774^+M1+E2 $+1.18 \times 20$ 0.01615×24 380.66 232776.862426.013^+, 4^+, 5^+2027.774^+M1+E2 $+1.18 \times 20$ $a^{(K)} = 0.0137 \times 23; a^{(L)} = 0.00190 \times 4; a^{(M)} = 0.0000 \times 7; a^{(M)} = 0.0000381 \times 7; a^{(N)} = 7.48 \times 10^{-5} I_3; a^{(O)} = 7.48 \times 10^{-5} I_2$ 437.86 4 0.53×4 2571.18 4.5 2133.295^-D+Q $-0.40 + 11-7$ 0.0130×10^{-1} 448.8 3 0.016×7 1968.486 $1^+, 2^+, 3^+$ 1519.998 2^+ 2^+ -0.59×9 (1988GoZD).448.8 3 0.016×7 1968.486 $1^+, 2^+, 3^+$ D+Q $-0.9 + 4-8$ E; only from 2012Hi10, Mult, δ_i from $\gamma(\theta)$ (2012Hi10).526.25 & 13 0.055×7 2494.20(3)^-1968.486 $1^+, 2^+, 3^+$ D+Q $-0.9 + 4-8$ E; conductor, form $\gamma(\theta)$ (2012Hi10).526.25 & 13 0.055×7 <	314.12 2	3.25 7	1811.14	6+	1497.021	4+	E2		0.0333	$\alpha(K) = 0.0278 \ 4; \ \alpha(L) = 0.00442 \ 7; \ \alpha(M) = 0.000895 \ 13; \ \alpha(N) = 0.0001733 \ 25; \ \alpha(M) = 0.21 \times 10^{-5} \ 24$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	373 16 21		2456 75		2122.20	5-				$u(0)=1.721\times10^{-2.24}$ E : only from 2012Hi10
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	353.65 21		2749.57		2395.92	3 4 ⁻	D+Q	+0.06 +7-6	0.0225	$\alpha(K)=0.0195; \alpha(L)=0.00244 \ 1; \alpha(M)=0.00048; \alpha(N+)=0.00012$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$										E_{γ} : only from 2012Hi10. Mult.,δ: from $\gamma(\theta)$ (2012Hi10).
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	357.2 ^{&} 4		2762.06	3-,4-,5-,6-,7-	2405.31	$(4^+, 5, 6^+)$				E_{γ} : only from 2012Hi10, tentative placement.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	368.16 8	0.18 3	2395.92	4-	2027.77	4+	E1+M2	-0.12 11	0.007 3	$\alpha(K)=0.0057\ 23;\ \alpha(L)=0.0007\ 4;\ \alpha(M)=0.00014$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	380.66 23	0.00.2	2776.86	2+ 4+ 5+	2395.92	4		1 10 20	0.01(15.04	E_{γ} : only from 2012H110.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	398.31 8	0.20 3	2426.01	3',4',5'	2027.77	4'	M1+E2	+1.18 20	0.01615 24	$\alpha(\mathbf{K})=0.0137822; \ \alpha(\mathbf{L})=0.001904; \alpha(\mathbf{M})=0.0003817; \ \alpha(\mathbf{N})=7.48\times10^{-5}13; \alpha(\mathbf{O})=7.82\times10^{-6}12 \mathbf{P}(\mathbf{C})=0.00038172 + 1.5; \mathbf{P}(\mathbf{M})=0.20 $
437.86 4 $0.53 4$ 2571.18 $4,5$ 2133.29 $5^ D+Q$ $-0.40 + 11-7$ $0.0130 1$ $0.150 + 1001 + 1000 (2012 Hi10)$ 448.8 3 $0.016 7$ $1968.486 + 1^+, 2^+, 3^+$ $1519.998 + 2^+$ $0.153 + 2587.14$ $0.016 + 2133.29 + 5^ 0.016 + 2133.29 + 5^ 0.016 + 2133.29 + 5^-$ 467.71 23 3038.73 $2571.18 + 4, 5$ $D+Q$ $-0.9 + 4-8$ E_{y} : only from 2012 Hi10.526.25 & 13 $0.055 + 7 + 2494.20 + (3)^ 1968.486 + 1^+, 2^+, 3^+$ $1968.486 + 1^+, 2^+, 3^+$ E_{y} : calculated from branching ratios in 2012 Hi10. E_{y} : calculated from branching ratios in 2012 Hi10. E_{y} : calculated from branching ratios in 2012 Hi10.										$B(E2)(W.u.)=1.8\times10^{-}+4-5$; $B(M1)(W.u.)=0.50^{-}+8-9^{-}$ $\delta = \pm 0.63\pm 30-54$ from $\gamma(\theta)$ (2012Hi10)
448.8 30.016 71968.486 $1^+, 2^+, 3^+$ 1519.998 2^+ 453.78 232587.142133.29 5^- 467.71 233038.732571.18 $4,5$ D+Q $-0.9 + 4 - 8$ 526.25 & 130.055 72494.20(3)^-1968.486 $1^+, 2^+, 3^+$ E _y : only from 2012Hi10. Mult, δ : from $\gamma(\theta)$ (2012Hi10). E _y : tentative placement in 2012Hi10, doublet. I _y : calculated from branching ratios in 2012Hi by evaluator.	437.86 4	0.53 4	2571.18	4,5	2133.29	5-	D+Q	-0.40 +11-7	0.0130 1	$\alpha(K)=0.0112 \ l; \ \alpha(L)=0.00142; \ \alpha(M)=0.00028$ Mult., δ : from $\gamma(\theta)$ (2012Hi10), other: +2.3 5 or $-0.56 \ 9$ (1988GoZD).
$453.78\ 23$ 2587.14 $2133.29\ 5^ E_{y}$: only from 2012Hi10. $467.71\ 23$ 3038.73 $2571.18\ 4,5$ $D+Q$ $-0.9 + 4-8$ E_{y} : only from 2012Hi10. $526.25^{\&}\ 13$ $0.055\ 7$ 2494.20 $(3)^ 1968.486\ 1^+, 2^+, 3^+$ E_{y} : tentative placement in 2012Hi10. E_{y} : calculated from branching ratios in 2012Hi E_{y} : calculated from branching ratios in 2012Hi	448.8 <i>3</i>	0.016 7	1968.486	$1^+, 2^+, 3^+$	1519.998	2+				· · · · · ·
467.71 23 3038.73 2571.18 4,5 D+Q $-0.9 + 4 - 8$ E' _y : only from 2012Hi10. Mult, δ : from $\gamma(\theta)$ (2012Hi10). 526.25 & 13 0.055 7 2494.20 (3) ⁻ 1968.486 1 ⁺ ,2 ⁺ ,3 ⁺ E _y : tentative placement in 2012Hi10, doublet. I _y : calculated from branching ratios in 2012Hi by evaluator.	453.78 23		2587.14		2133.29	5-				E_{γ} : only from 2012Hi10.
526.25 \times 13 0.055 7 2494.20 (3) ⁻ 1968.486 1 ⁺ ,2 ⁺ ,3 ⁺ E _y : tentative placement in 2012Hi10, doublet. I _y : calculated from branching ratios in 2012Hi by evaluator.	467.71 23		3038.73		2571.18	4,5	D+Q	-0.9 +4-8		E_{γ} : only from 2012Hi10. Mult., δ : from $\gamma(\theta)$ (2012Hi10).
by cvaluator.	526.25 ^{&} 13	0.055 7	2494.20	(3) ⁻	1968.486	1+,2+,3+				E_{γ} : tentative placement in 2012Hi10, doublet. I _{γ} : calculated from branching ratios in 2012Hi10 by evaluator
526.57 4 0.63 4 2337.71 (7) ⁻ 1811.14 6 ⁺ E1+M2 +0.025 28 0.00237 7 $\alpha(\mathbf{K})=0.00206 6$; $\alpha(\mathbf{L})=0.000250 7$;	526.57 4	0.63 4	2337.71	(7) ⁻	1811.14	6+	E1+M2	+0.025 28	0.00237 7	$\alpha(K)=0.00206\ 6;\ \alpha(L)=0.000250\ 7;$

 $^{128}_{52}{\rm Te}_{76}$ -4

					¹²⁸ Te(n,	$\mathbf{n}' \gamma$)	1988GoZ	D,2008Hi17,2012	Hi10 (continued	<u>d)</u>
							$\gamma(^{128})$	Te) (continued)		
	${\rm E_{\gamma}}^{\dagger}$	I_{γ}^{\ddagger}	E _i (level)	${ m J}^{\pi}_i$	E_f	\mathbf{J}_f^{π}	Mult. [#]	$\delta^{\#@}$	α	Comments
										$\alpha(M)=4.96\times10^{-5}$ 15; $\alpha(N)=9.8\times10^{-6}$ 3;
				. +					0.0000	$\alpha(0) = 1.06 \times 10^{-6} 3$
	530.75 2	2.50 8	2027.77	4+	1497.021	4-	M1+E2	-0.24 2	0.00806	$\alpha(\mathbf{K}) = 0.00698 \ I0; \ \alpha(\mathbf{L}) = 0.000869 \ I3;$
										$\alpha(M) = 0.0001729225, \alpha(M) = 3.42\times10^{-5}5, \alpha(M) = 3.73\times10^{-6}6$
										B(E2)(W.u.)=33 + 11 - 18; B(M1)(W.u.)=0.24
										+7-13
	532 02 10		2665 31		2122 20	5-				δ : -0.16 +10-6 (2012H110).
	555.24 8	0.027 9	2748.66	3+	2193.48	2^{+}				E_{γ} : only from 2012Hi10.
										I_{γ} : calculated from branching ratios in 2012Hi10
						-			.	by evaluator.
	567.67 32		2701.0		2133.29	5-	D+Q	+0.19 + 57 - 35	0.0070 4	$\alpha(K)=0.0060 4; \alpha(L)=0.00074 3$
										E_{γ} . only from 2012H110. Mult δ : from $\gamma(\theta)$ (2012Hi10).
	589.61 9		2985.53		2395.92	4-				E_{γ} : only from 2012Hi10.
	593.5 <mark>&</mark> 5		2405.31	$(4^+, 5, 6^+)$	1811.14	6+				E_{γ} : tentative placement (2012Hi10).
	602.95 13	0.10.2	2736.24	2- 4- 5- 5- 5-	2133.29	5-				E_{γ} : only from 2012Hi10.
L	628.75 9	0.193	2762.06	3-,4-,5-,6-,7-	2133.29	5 ⁻	$E1 \cdot M2$	10.020 6	1.54×10^{-3}	$\alpha(K) = 0.001242.10; \alpha(L) = 0.0001622.24;$
	030.20 2	1.3 2	2155.29	5	1497.021	4	E1+ML2	+0.0200	1.34×10	$\alpha(\mathbf{K})=0.001545\ T9;\ \alpha(\mathbf{L})=0.0001022\ 24;$ $\alpha(\mathbf{M})=3\ 21\times10^{-5}\ 5:\ \alpha(\mathbf{N})=6\ 34\times10^{-6}\ 9:$
										$\alpha(0)=6.87\times10^{-7}$ 10
	643.56 2	1.11 3	2163.547	3+	1519.998	2^{+}	M1+E2	+3.8 4	0.00419	$\alpha(K)=0.00360 \ 6; \ \alpha(L)=0.000477 \ 7;$
										$\alpha(M)=9.53\times10^{-5}$ 14; $\alpha(N)=1.87\times10^{-5}$ 3;
										$\alpha(0) = 1.98 \times 10^{-6} 3$ P(E2)(War) 02 + 17 26 P(M1)(War) 0.0020
										B(E2)(W.u.)=92 + 17 - 20; B(M1)(W.u.)=0.0039 + 11 - 14
										δ: 3.9 + 13 - 4 or 0.43 + 17 - 13 from $γ(θ)$
						_				(2012Hi10).
	643.58 5		2776.86	2.2	2133.29	5^{-}	DLO	106 124 0		E_{γ} : only from 2012Hi10, doublet.
	045.8 5		5159.9	2,5	2494.20	(3)	D+Q	+0.0 + 24 - 9		E_{γ} . only from 2012H110. Mult δ : from $\gamma(\theta)$ (2012Hi10).
	666.48	0.65	2163.547	3+	1497.021	4+	M1+E2	+0.59 +14-12	0.00446 11	$\alpha(K)=0.00386 \ 10; \ \alpha(L)=0.000482 \ 10;$
										$\alpha(M)=9.60\times10^{-5}$ 19; $\alpha(N)=1.90\times10^{-5}$ 4;
										$\alpha(0)=2.06\times10^{-6}$ 5
										B(E2)(W.u.)=12 + 5 - 6; B(M1)(W.u.)=0.024 + 6 - 8 Mult δ : from $\alpha(\theta)$ (2012Hi10) and BUU
	675 8 <mark>&</mark> 5		2869 002	$(1 2^+)$	2193 48	2+				E.: only from 2012Hi10 tentative placement
	691.70 <i>71</i>		2718.80	(1,2)	2027.77	$\frac{2}{4^{+}}$				E_{γ} : only from 2012H110, contained pracement. E_{γ} : only from 2012H110.
	697.97 6	0.13 2	2217.95	$1^+, 2^+, 3^+$	1519.998	2+				, <u>-</u>
	719.5 3	0.09 2	2912.78		2193.48	2 ⁺		17.70	0.00227.20	· (K) 0.00270.10, · (L) 0.00026.2
	128.63 17		2861.92		2133.29	5	D+Q	-1./ +/-9	0.00327 20	$\alpha(\mathbf{K})=0.0027978; \alpha(\mathbf{L})=0.000362$

S

From ENSDF

					¹²⁸ Te	$(\mathbf{n},\mathbf{n}'\gamma)$	1988GoZD	,2008Hi17,2012H	i10 (continue	<u>d)</u>
							$\gamma(^{128}\text{Te}$	e) (continued)		
	${E_\gamma}^\dagger$	I_{γ} ‡	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. [#]	$\delta^{\#@}$	α	Comments
						<u> </u>				E_{γ} : only from 2012Hi10.
	743.22 2	100	743.218	2+	0.0	0+	E2		0.00288	$\alpha(K)=0.00248 \ 4; \ \alpha(L)=0.000322 \ 5; \\ \alpha(M)=6.44\times10^{-5} \ 9; \ \alpha(N)=1.266\times10^{-5} \ 18; \\ \alpha(Q)=1.247\times10^{-6} \ 10$
	753.82 2	24.0 5	1497.021	4+	743.218	2+	E2		0.00278	$\alpha(0)=1.547\times10^{-5} 19$ $\alpha(K)=0.00239 4; \ \alpha(L)=0.000311 5;$ $\alpha(M)=6.21\times10^{-5} 9; \ \alpha(N)=1.221\times10^{-5} 17;$ $\alpha(Q)=1.200\times10^{-6} 10$
	760.16 12	0.042 12	2571.18	4,5	1811.14	6+				E_{γ} : only from 2012Hi10. I_{γ} : calculated from branching ratios in 2012Hi10 by evaluator
	773.31 2	1.37 4	2270.33	3+,4+,5+	1497.021	4+	M1+E2	+0.25 +15-8	0.00327 8	$\alpha(K)=0.00283 7; \ \alpha(L)=0.000348 7; \alpha(M)=6.91\times10^{-5} 14; \ \alpha(N)=1.37\times10^{-5} 3; \alpha(O)=1.50\times10^{-6} 4 D(\Sigma2)(V_{M}) = 1.20\times10^{-6} 4 D(M1)(W_{M}) = 0.25 \pm 4.5$
、 、	776.75 2	12.8 <i>3</i>	1519.998	2+	743.218	2+	M1+E2	+4.7 2	0.00262	B(E2)(W.u.)=18 +20-18; B(M1)(W.u.)=0.25 +4-5 δ : +0.22 +51-13 from $\gamma(\theta)$ (2012Hi10). $\alpha(K)=0.00225$ 4; $\alpha(L)=0.000291$ 4; $\alpha(M)=5.80\times10^{-5}$ 9; $\alpha(N)=1.142\times10^{-5}$ 16; $\alpha(\Omega)=1.219\times10^{-6}$ 17
	780.24 7	0.182 20	2748.66	3+	1968.486	1+,2+,3+	M1+E2	-0.29 +13-18	0.00319 9	B(E2)(W.u.)=28 + 7 - 14; B(M1)(W.u.)=0.0012 + 3 - 6 δ : +3.1 8 or -0.09 + 12 - 7 from 2008Hi17. α (K)=0.00276 8; α (L)=0.000339 8;
										$\alpha(M)=6.74\times10^{-5}$ 16; $\alpha(N)=1.34\times10^{-5}$ 3; $\alpha(O)=1.46\times10^{-6}$ 4 B(E2)(W.u.)=1.1 +10-11; B(M1)(W.u.)=0.012 +4-9 E _y : only from 2012Hi10.
										I_{γ} : calculated from branching ratios in 2012Hi10 by evaluator.
	787.86 4	0.37 3	2599.00?		1811.14	6+			0.0029 4	Mult., δ : from $\gamma(\theta)$ (2012Hi10) and RUL. δ : +0.52 8 or +1.7 +3-2 (1988GoZD).
	788.29 8	0.132 13	2308.30	0^{+}	1519.998	2+				E_{γ} : Doublet (2012H110). E_{γ} : from 2012H110. I_{γ} : calculated from branching ratios in 2012H110 by
	802.82 10		2830.66		2027.77	4+	D+Q	0.0 +18-3	0.0028 4	evaluator. $\alpha(K)=0.0024 \ 3; \ \alpha(L)=0.00029 \ 3$ $E_{\gamma}: \text{ only from 2012Hi10.}$
	820.57 20	61 2	3216.59		2395.92	4-	D+Q	+1.1 +34-7		Mult., δ : from $\gamma(\theta)$ (2012Hi10). Mult., δ : from $\gamma(\theta)$ (2012Hi10).
	836.2 5	0.017 6	3030.11	1,2+	2193.48	2+				E_{γ} : only from 2012Hi10. E_{γ} : only from 2012Hi10.
	843.9 5		2655.2		1811.14	6+				evaluator. E_{γ} : only from 2012Hi10 (tentative placement).

 $^{128}_{52}$ Te₇₆-6

				¹²⁸ Te(n	, n ′γ) 1	988GoZD,	2008Hi17,2012Hi	10 (continued)	
						$\gamma(^{128}\text{Te})$	(continued)		
E_{γ}^{\dagger}	I_{γ} ‡	E_i (level)	\mathbf{J}_i^{π}	E_f	J_f^π	Mult. [#]	$\delta^{\#@}$	α	Comments
852.26 <i>11</i> 873.24 <i>20</i>	0.09 <i>2</i> 0.080 <i>11</i>	2820.71 3067.15	$(1,2^+)$ 3	1968.486 2193.48	1 ⁺ ,2 ⁺ ,3 ⁺ 2 ⁺	D+Q	-0.09 +18-23		E_{γ} : only from 2012Hi10. Mult.,δ: from $\gamma(\theta)$ (2012Hi10). I_{γ} : calculated from branching ratios in 2012Hi10 by
876.62 12		2904.42		2027.77	4+	D+Q	+1.44 25	0.00214 5	evaluator. $\alpha(K)=0.00184 5; \alpha(L)=0.00023 I$ E_{γ} : only from 2012Hi10.
890.24 26	0.022 5	2869.00?	(1,2 ⁺)	1978.80	0+				Mult., δ : from $\gamma(\theta)$ (2012H110). E _{γ} : only from 2012Hi10. I _{γ} : calculated from branching ratios in 2012Hi10 by
900.48 <i>13</i>	0.022 5	2869.00?	(1,2 ⁺)	1968.486	1+,2+,3+	D+Q	-0.5 +4-29	0.00226 13	evaluator. $\alpha(K)=0.0019 \ 4; \ \alpha(L)=0.00024 \ 1$ $E_{\gamma}: \text{ only from 2012Hi10.}$ $I_{\gamma}: \text{ calculated from branching ratios in 2012Hi10 by evaluator.}$
905.37 15		3038.73		2133.29	5 ⁻ 2+	D+Q	-0.7 +3-4		Mult., δ : from $\gamma(\theta)$ (2012Hi10). E _{γ} : only from 2012Hi10. Mult., δ : from $\gamma(\theta)$ (2012Hi10). E : only from 2012Hi10.
908.03 13 908.32 8 928.97 3	0.25 <i>3</i> 0.92 <i>4</i>	2405.31 2426.01	(4 ⁺ ,5,6 ⁺) 3 ⁺ ,4 ⁺ ,5 ⁺	1497.021 4 1497.021 4	4+ 4+ 4+	M1+E2	-0.147 17	0.00215	$\alpha(K)=0.00187 \ 3; \ \alpha(L)=0.000228 \ 4;$ $\alpha(M)=4.52\times10^{-5} \ 7; \ \alpha(N)=8.96\times10^{-6} \ 13;$ $\alpha(O)=9.82\times10^{-7} \ 14$ $B(E2)(W.u.)=4.3 +11-12; \ B(M1)(W.u.)=0.26 +3-4$
946.1 5		3139.9	2,3	2193.48	2+	D+Q	+0.03 +48-54		δ: -0.13 +7-6 from γ(θ) (2012Hi10). E _γ : only from 2012\text{Hi}10. Multδ: from $γ(θ) (2012\text{Hi}10).$
957.8 <i>3</i> 967.40 <i>14</i>	0.172 14	3091.1 2487.44	3+	2133.29 1519.998	5- 2 ⁺				E_{γ} : only from 2012Hi10. E_{γ} : only from 2012Hi10. I_{γ} : calculated from branching ratios in 2012Hi10 by evaluator
974.21 28	0.080 4	2494.20	(3)-	1519.998	2+				E_{γ} : only from 2012Hi10. I_{γ} : calculated from branching ratios in 2012Hi10 by
990.45 ^{&} 4	0.39 <i>3</i>	2487.44	3+	1497.021	4+	M1+E2	+0.43 +25-24	0.00181 7	$\alpha(K)=0.00157 \ 6; \ \alpha(L)=0.000192 \ 7; \\ \alpha(M)=3.80\times10^{-5} \ 13; \ \alpha(N)=7.5\times10^{-6} \ 3; \\ \alpha(O)=8.2\times10^{-7} \ 3 \\ B(E2)(W.u.)=3 \ +4-3; \ B(M1)(W.u.)=0.025 \ +8-10 \\ M. \ b \ c \ (m) \ (2010W10) \ -1 \ DW$
996.64 6 ^x 1007.1 3 ^x 1012.95 5	0.054 <i>13</i> 0.18 <i>3</i>	2516.64		1519.998	2+				Mult., ρ : from $\gamma(\theta)$ (2012H110) and RUL. E _{γ} : only from 2012H110.

 $^{128}_{52}$ Te₇₆-7

From ENSDF

 $^{128}_{52}{
m Te}_{76}$ -7

				¹²⁸ Te (n,n ′γ) 1	988GoZD,	2008Hi17,2012H	(i10 (continued)	
						$\gamma(^{128}\text{Te})$	(continued)		
${\rm E}_{\gamma}^{\dagger}$	I_{γ}^{\ddagger}	E_i (level)	J_i^{π}	E_f	${ m J}_f^\pi$	Mult. [#]	$\delta^{\#@}$	α	Comments
1030.40 15	0.157 17	2550.52?	3+	2133.29	2 ⁺	M1+E2	>5	1.36×10 ⁻³ 2	
1033.4 3	0.23 3	2851.91	$(4^+, 5, 6^+)$	1811.14	5 6 ⁺				E_{γ} . Only noni 2012 millo.
1053.50 <i>3</i>	0.61 4	2550.52?	3+	1497.021	4+	M1+E2	+0.03 6	1.63×10 ⁻³	$\begin{aligned} &\alpha(\mathbf{K}) = 0.001413 \ 20; \ \alpha(\mathbf{L}) = 0.0001713 \ 24; \\ &\alpha(\mathbf{M}) = 3.40 \times 10^{-5} \ 5; \ \alpha(\mathbf{N}) = 6.74 \times 10^{-6} \ 10 \\ &\alpha(\mathbf{O}) = 7.39 \times 10^{-7} \ 11 \\ &\mathbf{B}(\mathbf{E}2)(\mathbf{W}.\mathbf{u}.) = 0.04 \ + 15 - 4; \\ &\mathbf{B}(\mathbf{M}1)(\mathbf{W}.\mathbf{u}.) = 0.065 \ + 13 - 16 \\ &\mathbf{Mult.}, \delta: \ \text{from } \gamma(\theta) \ (2012\text{Hi10}) \ \text{and } \mathbf{RUL}, \\ &\text{other: } -0.025 \ 35 \ \text{or } -7.6 \ + 17 - 22 \\ &(1988\text{GoZD}). \end{aligned}$
1074.14 10	0.079 15	2571.18	4,5	1497.021	4 ⁺				
1074.30 22		2885.02	5	1811.14	6+	D+Q	-8 +5-19	0.00125 3	α (K)=0.00107 3; α (L)=0.00013 E _{γ} : only from 2012Hi10. Mult. δ : from $\gamma(\theta)$ (2012Hi10).
^x 1091.33 <i>16</i>	0.060 13	0105 400		2025 55	4				
1097.62.6	0.14 3	3125.40? 3067.15	3	2027.77	$4' 1^+ 2^+ 3^+$				Ex: only from 2012Hi10, doublet
1118.6 9		3146.4	U	2027.77	4+				E_{γ} : only from 2012Hi10.
1132.63 11	0.052.13	3101.29	1+ 2+ 3+	1968.486	$1^+, 2^+, 3^+$				E_{γ} : only from 2012Hi10.
1138.63 22	0.052 15	3166.51	3^{-}	2027.77	4 ⁺				E_{γ} : only from 2012Hi10.
1141.5 17		2952.6		1811.14	6^+				E_{γ} : only from 2012Hi10.
1157.82 25 1158.3 5		2655.2		1497.021	4 ⁺				E_{γ} : only from 2012Hi10, doublet (tentative placement).
1171.2 26		3139.9	2,3	1968.486	$1^+, 2^+, 3^+$	D+Q	-1.5 +15-24		E_{γ} : only from 2012Hi10.
1186.7 2	0.033 12	2706.65	1+,2+,3+	1519.998	2+				$\gamma(\theta) (2012 \text{mm}).$
1186.7 3		2997.8		1811.14	6+				δ : tan ⁻¹ (δ)=-0.72 +38-145 gives δ <-0.35, all positive values are possible.
1192.2 2	0.061 13	2712.23?	1+,2+,3+	1519.998	2 ⁺				L_{γ} . only non 2012 mo.
1221.75 12	4 22 0	2718.80	1+ 2+ 2+	1497.021	4+ 2+	M1 · D2	0.210.11	1.16×10^{-3}	E_{γ} : only from 2012Hi10.
1225.27 2	4.23 9	1908.486	1',2',3'	743.218	Ζ.	MI+E2	-0.210 11	1.16×10 °	$\alpha(\mathbf{N})=0.001001\ 14;\ \alpha(\mathbf{L})=0.0001210\ 1/;\alpha(\mathbf{M})=2.40\times10^{-5}\ 4;\ \alpha(\mathbf{N})=4.76\times10^{-6}\ 7;\alpha(\mathbf{O})=5.22\times10^{-7}\ 8$

 ∞

 $^{128}_{52}{
m Te}_{76}{
m -8}$

				¹²⁸ Te(n,n	'γ) 1988G	oZD,2008Hi17,2	2012Hi10 (conti	nued)
					<u>γ(</u>	¹²⁸ Te) (continued	l)	
${\rm E_{\gamma}}^{\dagger}$	I_{γ}^{\ddagger}	E _i (level)	${ m J}^{\pi}_i$	\mathbf{E}_f J ²	f_{f}^{π} Mult. [#]	$\delta^{\#@}$	α	Comments
1228.02 10	0.29 3	2748.66	3+	1519.998 2	* M1+E2	-0.03 +9-10	1.16×10 ⁻³	B(E2)(W.u.)=1.08 +14-15; B(M1)(W.u.)=0.055 5 δ : +3.9 +13-8 or +0.13 +14-7 from 2008Hi17. α (K)=0.001004 15; α (L)=0.0001212 18; α (M)=2.41×10 ⁻⁵ 4; α (N)=4.77×10 ⁻⁶ 7; α (O)=5.23×10 ⁻⁷ 8 B(E2)(W.u.)=0.002 +13-2; B(M1)(W.u.)=0.0053 +17-40 E = calc from 2012U10
								I _y : calculated from branching ratios in 2012Hi10 by evaluator. Mult δ : from $\alpha(\theta)$ (2012Hi10) and BUI
1235.58 <i>3</i>	0.95 4	1978.80	0^{+}	743.218 2	+			
1243.96 <i>13</i>	0 17 2	2763.97	2+	1519.998 2	+ + M1+E2	0.02.10	1 10 10 - 3 2	E_{γ} : only from 2012Hi10.
1251.81 8	0.17 2	2748.66	3'	1497.021 4	' M1+E2	-0.03 19	1.12×10 ⁻⁹ -2	$\begin{aligned} \alpha(\mathbf{K}) &= 0.000963 \ I6; \ \alpha(\mathbf{L}) &= 0.0001162 \ I9; \\ \alpha(\mathbf{M}) &= 2.31 \times 10^{-5} \ 4; \ \alpha(\mathbf{N}) &= 4.57 \times 10^{-6} \ 8; \\ \alpha(\mathbf{O}) &= 5.01 \times 10^{-7} \ 9 \\ \mathbf{B}(\mathbf{E2})(\mathbf{W}.\mathbf{u}.) &= 0.001 \ + 15 - 1; \ \mathbf{B}(\mathbf{M1})(\mathbf{W}.\mathbf{u}.) &= 0.0029 \\ &+ 10 - 23 \end{aligned}$
1284.54 <i>3</i>	1.38 4	2027.77	4+	743.218 2	+ E2		8.71×10 ⁻⁴	δ: from $\gamma(\theta)$ (2012Hi10) and RUL. $\alpha(K)=0.000739 \ 11; \ \alpha(L)=9.06\times10^{-5} \ 13; \ \alpha(M)=1.80\times10^{-5} \ 3; \ \alpha(N)=3.56\times10^{-6} \ 5; \ \alpha(O)=3.86\times10^{-7} \ 6$
1300.45 11	0.084 10	2820.71	(1,2 ⁺)	1519.998 2	+			B(E2)(W.u.)= $4.0 + 11 - 21$ E _{γ} : only from 2012Hi10. I _{γ} : calculated from branching ratios in 2012Hi10 by evaluator
^x 1324.20 <i>15</i> ^x 1329 36 <i>17</i>	0.10 <i>2</i> 0.089 <i>16</i>							by Evaluator.
1349.10 13	0.049 13	2869.00?	$(1,2^+)$	1519.998 2	+			
1354.95 9	0.10 2	2851.91	$(4^+, 5, 6^+)$	1497.021 4	+	0.0 5 10	0.00000 7	
1364.68 15	0.036 11	2884.51	1',2',3'	1519.998 2	' M1+E2	-0.8 +3-12	0.00089 7	$\alpha(K) = 0.000/4 \ 6; \ \alpha(L) = 9.0 \times 10^{-5} \ 7; \alpha(M) = 1.78 \times 10^{-5} \ 14; \ \alpha(N) = 3.5 \times 10^{-6} \ 3; \alpha(O) = 3.9 \times 10^{-7} \ 3 B(E2)(W.u.) = 0.5 \ 5; \ B(M1)(W.u.) = 0.0023 \ 14 Mult., \delta: from \ \gamma(\theta) \ (2012Hi10) \ and \ RUL.$
1371.55 <i>13</i> 1384.46 <i>25</i>	0.023 8	2891.46 2904.42	2+	1519.998 2 1519.998 2	+ +			E_{γ} : only from 2012Hi10.
x1384.64 9	0.11 2	2005 02	5	1407.001.4	+ D+O	0.12 . 10 0	0.00000.1	· (K) 0.00077.1
1387.70 10		2883.02	2	1497.021 4	U+Ų	-0.13 +10-9	0.00090 1	$a(\mathbf{x}) = 0.000777$ E_{γ} : only from 2012Hi10. Mult., δ : from $\gamma(\theta)$ (2012Hi10).
1393.0 5	0.0054 15	2912.78		1519.998 2	+			E_{γ} : only from 2012Hi10. I _{γ} : calculated from branching ratios in 2012Hi10 by evaluator.

					~(11,11	,, 1,00	$\gamma(^{128}\text{Te})$ (conti	nued)	
E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. [#]	$\delta^{\#@}$	α	Comments
1394.45 <i>34</i>	0.019 12	2891.46	2+	1497.021	4+				E_{γ} : only from 2012Hi10, doublet. I _{\gamma} : calculated from branching ratios in 2012Hi10 by evaluator.
1401.55 <i>14</i> 1420.30 <i>3</i>	0.88 4	2921.56 2163.547	3+	1519.998 743.218	2+ 2+	M1+E2	+0.419 11	8.69×10 ⁻⁴	E _y : only from 2012Hi10. $\alpha(K)=0.000712 \ I0; \ \alpha(L)=8.58\times10^{-5} \ I2; \ \alpha(M)=1.702\times10^{-5} \ 24; \ \alpha(N)=3.37\times10^{-6} \ 5; \ \alpha(O)=3.70\times10^{-7} \ 6 \ P(E2)(Wu) = 0.0028 + 7. \ H$
1434.83 <i>4</i>	0.47 3	2931.86?	3+,4+,5+	1497.021	4+	M1+E2	+4.0 3	7.48×10 ⁻⁴	B(E2)(W.d.)=0.22 + 5-7, B(M1)(W.d.)=0.0038 +7-11 δ: 0.43 +13-6 from $\gamma(\theta)$ (2012Hi10). $\alpha(K)=0.000599$ 9; $\alpha(L)=7.29\times10^{-5}$ 11; $\alpha(M)=1.446\times10^{-5}$ 21; $\alpha(N)=2.86\times10^{-6}$ 4; $\alpha(O)=3.11\times10^{-7}$ 5
1434.85 <i>6</i> 1450.28 <i>3</i>	2.43 7	2954.87 2193.48	2+	1519.998 743.218	2+ 2+	M1+E2	-0.116 <i>13</i>	8.61×10 ⁻⁴	E _{γ} : Doublet (2012Hi10). E _{γ} : only from 2012Hi10, doublet. α (K)=0.000697 <i>10</i> ; α (L)=8.38×10 ⁻⁵ <i>12</i> ; α (M)=1.663×10 ⁻⁵ <i>24</i> ; α (N)=3.30×10 ⁻⁶ <i>5</i> ; α (M)=2.62×10 ⁻⁷ <i>5</i> ;
1463.32 7	0.12 4	2983.32?	3+	1519.998	2+	M1+E2	-0.8 +4-7	0.00080 4	$B(E2)(W.u.)=0.55 \ 13; B(M1)(W.u.)=0.128 \ 7$ $\delta: -0.03 \ +9-6 \ or \ +2.5 \ 5 \ from \ 2008Hi17.$ $\alpha(K)=0.00064 \ 4; \ \alpha(L)=7.7\times10^{-5} \ 5; \ \alpha(M)=1.53\times10^{-5}$ $9; \ \alpha(N)=3.04\times10^{-6} \ 17; \ \alpha(O)=3.32\times10^{-7} \ 19$ $B(E2)(W.u.)=4 \ 3; \ B(M1)(W.u.)=0.018 \ 11$
1474.76 <i>3</i>	1.34 4	2217.95	1+,2+,3+	743.218	2+	M1+E2	+0.16 16	8.39×10 ⁻⁴ 15	$\begin{split} & I_{\gamma}: \text{ from } 2012\text{H}^{-1}3, \ \mathcal{D}(\text{H}^{-1})(\text{H}^{-1})^{-1}.010\text{ H}^{-1}\\ & I_{\gamma}: \text{ from } 2012\text{H}^{-1}0, \text{ other:} \leq 0.18 \ (1988\text{GoZD}).\\ & \text{Mult.}, \delta: \text{ from } \gamma(\theta) \ (2012\text{H}^{-1}10).\\ & \alpha(\text{K}) = 0.000671 \ 13; \ \alpha(\text{L}) = 8.07 \times 10^{-5} \ 15;\\ & \alpha(\text{M}) = 1.60 \times 10^{-5} \ 3; \ \alpha(\text{N}) = 3.17 \times 10^{-6} \ 6;\\ & \alpha(\text{O}) = 3.48 \times 10^{-7} \ 7 \end{split}$
1477.15 25		2997.49		1519.998	2+				B(E2)(W.u.)=0.1 +3-1; B(M1)(W.u.)=0.014 +18-14 Mult., δ : from $\gamma(\theta)$ (2012Hi10) and RUL. E _{γ} : only from 2012Hi10. δ : tan ⁻¹ (δ)=+0.94 +100-103 gives δ <-0.07, all positive
1486.28 7	0.09 3	2983.32?	3+	1497.021	4+	M1+E2	-0.9 +8-7	0.00078 6	values are possible. $\alpha(K)=0.00061 5; \alpha(L)=7.4\times10^{-5} 6; \alpha(M)=1.47\times10^{-5}$ <i>11</i> ; $\alpha(N)=2.91\times10^{-6} 23; \alpha(O)=3.2\times10^{-7} 3$ B(E2)(W.u.)=3 3; B(M1)(W.u.)=0.012 <i>11</i> Ly: from 2012Hi10, other:<0.22 (1988GoZD).
1520.02 5	0.40 3	1519.998	2+	0.0	0+	E2		6.96×10 ⁻⁴	Mult., δ : from $\gamma(\theta)$ (2012Hi10). $\alpha(K)=0.000529 \ 8; \ \alpha(L)=6.42\times10^{-5} \ 9;$ $\alpha(M)=1.273\times10^{-5} \ 18; \ \alpha(N)=2.52\times10^{-6} \ 4;$ $\alpha(O)=2.74\times10^{-7} \ 4$
1534.48 12		3054.50		1519.998	2+				B(E2)(W.u.)= $0.032 + 8 - 16$ E _{γ} : only from 2012Hi10.

 $^{128}_{52}$ Te₇₆-10

				¹²⁸ Te (n , n ' γ)	1988Go	ZD,2008Hi17,201	2Hi10 (contin	uued)
					$\gamma(^{12}$	²⁸ Te) (continued)		
E_{γ}^{\dagger}	I_{γ} ‡	E _i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult. [#]	$\delta^{\#@}$	α	Comments
1547.04 <i>12</i> 1551.42 <i>17</i> 1551.42 <i>20</i>	0.087 16	3067.15 3048.45 3071.60	3	1519.998 2 ⁺ 1497.021 4 ⁺ 1519.998 2 ⁺	D+Q	+0.09 +17-15		Mult., δ : from $\gamma(\theta)$ (2012Hi10). E _{γ} : only from 2012Hi10, doublet. E _{γ} : only from 2012Hi10.
1565.08 <i>4</i> 1570.61 <i>18</i>	0.34 <i>2</i> 0.136 <i>18</i>	2308.30 3067.15	0+ 3	743.218 2 ⁺ 1497.021 4 ⁺	D+Q	-0.4 +3-48		E _γ : only from 2012Hi10. δ: from $\gamma(\theta)$ (2012Hi10). I _γ : calculated from branching ratios in 2012Hi10 by evaluator
1574.63 15		3071.60		1497.021 4+	D+Q	-3 +2-90		E_{γ} : only from 2012Hi10. Mult. δ : from $\gamma(\theta)$ (2012Hi10).
1580.37 <i>12</i> 1600.6 <i>3</i>	0.068 14	3100.42 3097.6	1,2,3	1519.998 2 ⁺ 1497.021 4 ⁺	D+Q	-4 +2-12		Mult., δ : from $\gamma(\theta)$ (2012Hi10). E _v : only from 2012Hi10.
1608.88 <i>3</i>	1.17 4	2352.11	2+	743.218 2+	M1+E2	-0.230 14	7.55×10 ⁻⁴	$\alpha(K)=0.000555 \ 8; \ \alpha(L)=6.66 \times 10^{-5} \ 10;$ $\alpha(M)=1.321 \times 10^{-5} \ 19; \ \alpha(N)=2.62 \times 10^{-6} \ 4;$ $\alpha(O)=2.88 \times 10^{-7} \ 4$ B(E2)(W.u.)=0.43 +6-7; B(M1)(W.u.)=0.0313 +22-28 δ : -0.19 10 or +4.5 +31-14 from 2008Hi17. Both values should have appeared in Table V according to e-mail
1617.9 <i>4</i>	0.000.16	3137.43	2+	1519.998 2+				E _{γ} : only from 2012Hi10. δ : tan ⁻¹ (δ)=-0.97 +97-94 gives δ >+2.8, all negative values are possible.
1622.82 <i>15</i> 1628.25 <i>11</i>	0.080 16	3148.35		1519.998 2+				E_{γ} : only from 2012Hi10.
1628.39 8 1638.77 <i>23</i>	0.16 2	3125.40? 3135.80		1497.021 4 ⁺ 1497.021 4 ⁺	D+Q	+0.43 +58-40		E_{γ} : only from 2012Hi10. Mult.,δ: from $\gamma(\theta)$ (2012Hi10).
1638.93 <i>11</i> 1697.2 5 1698.6 <i>11</i> 1701.2 <i>13</i> 1702.1 <i>17</i> 1724.4 <i>3</i> 1729.4 <i>4</i> 1731.0 <i>4</i> 1735.0 <i>4</i> 1738.99 <i>7</i>	0.12 2 39 2	3607.42? 3216.59 3195.6 3221.4 3199.1 3221.4 3249.4 3251.0 3255.0 2482.22		$\begin{array}{cccccccc} 1968.486 & 1^+, 2^+, 3^+ \\ 1519.998 & 2^+ \\ 1497.021 & 4^+ \\ 1519.998 & 2^+ \\ 1497.021 & 4^+ \\ 1497.021 & 4^+ \\ 1519.998 & 2^+ \\ 1519.998 & 2^+ \\ 1519.998 & 2^+ \\ 1519.998 & 2^+ \\ 743.218 & 2^+ \end{array}$				E _y : only from 2012Hi10. E _y : only from 2012Hi10, doublet. E _y : only from 2012Hi10, doublet. E _y : only from 2012Hi10. E _y : only from 2012Hi10.
1744.18 4	0.38 2	2487.44	3+	743.218 2+	M1+E2	+0.268 21	7.10×10 ⁻⁴	$\alpha(K)=0.000468 7; \alpha(L)=5.60\times10^{-5} 8;$ $\alpha(M)=1.110\times10^{-5} 16; \alpha(N)=2.20\times10^{-6} 3;$ $\alpha(O)=2.42\times10^{-7} 4$ B(E2)(W.u.)=0.077 +21-30; B(M1)(W.u.)=0.0049
1750.94 <i>3</i>	1.58 5	2494.20	(3)-	743.218 2+	E1+M2	+0.029 10	6.47×10^{-4}	$\alpha(K)=0.000201 \ 3; \ \alpha(L)=2.37\times10^{-5} \ 4; \ \alpha(M)=4.68\times10^{-6}$

From ENSDF

 $^{128}_{52}$ Te₇₆-11

				¹²⁸ Te(n,	$\mathbf{n}' \gamma$)	1988G	oZD,2008Hi17,20	12Hi10 (continu	ed)
$\gamma(^{128}\text{Te})$ (continued)									
${\rm E}_{\gamma}^{\dagger}$	I_{γ}^{\ddagger}	E _i (level)	J_i^π	E_{f} J	\mathbf{J}_{f}^{π} N	Mult. [#]	$\delta^{\#@}$	α	Comments
1764.83 <i>4</i>	0.69 3	2508.06	2+	743.218 2	2 ⁺ N	11+E2	+1.8 3	6.61×10 ⁻⁴ 11	7; $\alpha(N)=9.26\times10^{-7}$ 14; $\alpha(O)=1.015\times10^{-7}$ 15 B(E1)(W.u.)=0.000194 +20-25; B(M2)(W.u.)=0.24 17 $\alpha(K)=0.000413$ 8; $\alpha(L)=4.96\times10^{-5}$ 9; $\alpha(M)=9.82\times10^{-6}$ 18; $\alpha(N)=1.95\times10^{-6}$ 4; $\alpha(O)=2.13\times10^{-7}$ 4
1766 3 4		3286 3		1519 998 2	7+				$B(0)=2.13\times10^{-4}$ B(E2)(W.u.)=1.32+22-25; B(M1)(W.u.)=0.0019 6 $\delta: +0.63+36-23$ from 2008Hi170.19 10 in Table V is incorrect. E : only from 2012Hi10
1776.9 <i>4</i> 1783.8 <i>4</i> 1700.41.0	0.11.2	3296.9 3303.8 3206.462	$(2^+, 2, 4^+)$	1519.998 2 1519.998 2 1519.998 2	$\frac{2}{2^{+}}$ $\frac{2^{+}}{2^{+}}$				E_{γ} : only from 2012Hi10. E_{γ} : only from 2012Hi10. E_{γ} : only from 2012Hi10.
1807.30 <i>6</i>	0.11 2 0.21 2	2550.52?	(2,,5,4) 3 ⁺	743.218 2	+ 2+ N	11+E2	-0.03 +12-13	7.04×10 ⁻⁴	$\alpha(K)=0.000438 7; \alpha(L)=5.24\times10^{-5} 8; \alpha(M)=1.038\times10^{-5} 15; \alpha(N)=2.06\times10^{-6} 3; \alpha(O)=2.26\times10^{-7} 4$
									B(E2)(W.u.)=0.001 +7-1; B(M1)(W.u.)=0.0044 +9-11 Mult., δ : from $\gamma(\theta)$ (2012Hi10) and RUL, other -0.06 5 or -3.2 +5-7 (1988GoZD).
1886.92 4	0.64 3	2630.14	1+,2+,3+	743.218 2	2+ N	11+E2	+1.91 11	6.59×10 ⁻⁴	$\alpha(K)=0.000362 \ 6; \ \alpha(L)=4.33\times10^{-5} \ 7; \\ \alpha(M)=8.59\times10^{-6} \ 13; \ \alpha(N)=1.701\times10^{-6} \ 25; \\ \alpha(O)=1.86\times10^{-7} \ 3 \\ B(E2)(W,u)=4.7 \ 6; \ B(M1)(W,u)=0.0069 \ 11 \\ B(K)=0.0069 $
					- 1				δ : +0.63 +15-8 (2012Hi10).
1900.05 6	0.16 2	2643.28	1+ 0+ 2+	743.218 2	2+ x+	(1 · E2	14.127.0	(70)(10-4)22	$(X) = 0.000241(20, -(X)) = 4.075(10^{-5})24$
1903.42 4	0.38 2	2706.65	1,2,3,	/45.218 2	2 · N	11+E2	+1.4 +127-9	6.70×10 · 22	$\begin{aligned} \alpha(\mathbf{K}) &= 0.000341\ 20;\ \alpha(\mathbf{L}) = 4.07 \times 10^{-6}\ 24;\\ \alpha(\mathbf{M}) &= 8.1 \times 10^{-6}\ 5;\ \alpha(\mathbf{N}) = 1.60 \times 10^{-6}\ 10;\\ \alpha(\mathbf{O}) &= 1.75 \times 10^{-7}\ 11\\ \mathbf{B}(\mathbf{E2})(\mathbf{W}.\mathbf{u}.) &= 3\ +20\ -3;\ \mathbf{B}(\mathbf{M1})(\mathbf{W}.\mathbf{u}.) = 0.009\ +112\ -9 \end{aligned}$
1969.00 4	≤0.55	2712.23?	1+,2+,3+	743.218 2	2+ N	11+E2	-0.9 +11-67	6.80×10 ⁻⁴ 25	Mult., δ : from $\gamma(\theta)$ (2012Hi10) and RUL. $\alpha(K)=0.000348\ 23;\ \alpha(L)=4.2\times10^{-5}\ 3;$ $\alpha(M)=8.2\times10^{-6}\ 6;\ \alpha(N)=1.63\times10^{-6}\ 11;$ $\alpha(Q)=1.70\times10^{-7}\ 13$
									B(E2)(W.u.)=1.0 +19-10; B(M1)(W.u.)=0.007 +12-7 I _γ : authors of 1988GoZD give≤0.52 3. Mult.,δ: from $\gamma(\theta)$ (2012Hi10) and RUL.
2005.45 5	0.25 2	2748.66	3+	743.218 2	2+ N	11+E2	-0.03 16	7.00×10 ⁻⁴	$\begin{aligned} &\alpha(\mathbf{K}) = 0.000353 \ 6; \ \alpha(\mathbf{L}) = 4.21 \times 10^{-5} \ 6; \\ &\alpha(\mathbf{M}) = 8.35 \times 10^{-6} \ 12; \ \alpha(\mathbf{N}) = 1.655 \times 10^{-6} \ 24; \\ &\alpha(\mathbf{O}) = 1.82 \times 10^{-7} \ 3 \\ &\mathbf{B}(\mathbf{E}2)(\mathbf{W}.\mathbf{u}.) = 0.0002 \ +17 - 2; \ \mathbf{B}(\mathbf{M}1)(\mathbf{W}.\mathbf{u}.) = 0.0010 \\ &+4 - 8 \end{aligned}$
2020.73 <i>17</i> x2062.38 <i>14</i>	0.051 13	2763.97		743.218 2	2+				Mult., δ : from $\gamma(\theta)$ (2012Hi10) and RUL. E _{γ} : only from 2012Hi10.

 $^{128}_{52}$ Te₇₆-12

н

				¹²⁸ Te(n,	,n ′γ)	1988G	60ZD,2008Hi17,20	012Hi10 (continu	led)
						<u>γ(</u>	¹²⁸ Te) (continued)	2	
${\rm E_{\gamma}}^{\dagger}$	I_{γ}^{\ddagger}	E _i (level)	J_i^π	E_{f}	\mathbf{J}_{f}^{π}	Mult. [#]	$\delta^{\#@}$	α	Comments
2077.53 6	0.20 2	2820.71	$(1,2^+)$	743.218	2+				
2087.62 17	0.046.12	2830.66	(1.2^+)	743.218	2 ⁺ 2 ⁺				E_{γ} : only from 2012H110. δ : tap ⁻¹ (δ)=-0.94 +76-78 gives +6< δ <-0.2
2125.57 17	0.040 12	2007.00:	(1,2)	745.210	2				(2012Hi10).
2141.25 6	0.18 2	2884.51	1+,2+,3+	743.218	2+	M1+E2	-2.5 +27-20	0.00069 3	$\alpha(K)=0.000283 \ 25; \ \alpha(L)=3.4\times10^{-5} \ 3; \\ \alpha(M)=6.7\times10^{-6} \ 6; \ \alpha(N)=1.32\times10^{-6} \ 12; \\ \alpha(O)=1.45\times10^{-7} \ 14 \\ B(E2)(W.u.)=0.60 \ 21; \ B(M1)(W.u.)=0.0007$
									+13-7 Mult δ : from $\gamma(\theta)$ (2012Hi10) and RUI
2148.22 15	0.050 13	2891.46	2+	743.218	2+	M1+E2	-0.94 +60-69	7.04×10 ⁻⁴ 15	$\alpha(K) = 0.000293 \ I2; \ \alpha(L) = 3.49 \times 10^{-5} \ I4; \alpha(M) = 6.9 \times 10^{-6} \ 3; \ \alpha(N) = 1.37 \times 10^{-6} \ 6; \alpha(O) = 1.50 \times 10^{-7} \ 7$
									B(E2)(W.u.)=0.12 + 9-10; B(M1)(W.u.)=0.0009 7 Mult δ : from $\gamma(\theta)$ (2012Hi10) and RUL
2161.36 44		2904.42		743.218	2+				E_{γ} : only from 2012Hi10.
2169.53 6	0.21 2	2912.78		743.218	$2^+_{2^+}$				\mathbf{E} : only from 2012Hi10
2178.3 24 2193.42 6	0.27 2	2193.48	2+	0.0	2 0 ⁺	E2		6.98×10 ⁻⁴	$\alpha(K)=0.000267 \ 4; \ \alpha(L)=3.18\times10^{-5} \ 5; \ \alpha(M)=6.30\times10^{-6} \ 9; \ \alpha(N)=1.247\times10^{-6} \ 18; \ \alpha(O)=1.366\times10^{-7} \ 20$
									B(E2)(W.u.)=0.58 5
2211.71 15		2954.87		743.218	2+	D+Q	+0.8 + 22 - 3		E_{γ} : only from 2012Hi10. Mult δ : from $\gamma(\theta)$ (2012Hi10)
2211.71 7	≤0.19	3731.72?		1519.998	2+				I_{γ} : authors of 1988GoZD give ≤ 0.17 2.
2217.68 13	0.063 13	2217.95	$1^+, 2^+, 3^+$	0.0	0^{+}				, _
2240.0 <i>3</i>	0.051 13	2983.32?	3+	743.218	2^{+}				
2251.26 10	0.04712 0.14.2	3030 11	1 2+	743 218	2+	$D \pm O$	$-1.6 \pm 9 - 46$		$B(F2)(W_{11}) = (0.12 \pm 8 - 10)$
2200.00 0	0.14 2	5050.11	1,2	/=3.210	2	DIQ	1.0 19 40		B(M1)(W.u.) = (0.0004 4)
									Mult., δ : from $\gamma(\theta)$ (2012Hi10).
2311.3 2		3054.50		743.218	2+				E_{γ} : only from 2012Hi10.
2323.80 9	0.16 2	3067.15	3	743.218	2 ⁺ 2 ⁺	D+Q	+0.32 + 26 - 22		Mult., δ : from $\gamma(\theta)$ (2012Hi10).
2328.3 3	0.20.2	30/1.00	2+	/43.218	2 · 0+	E2		7 28, 10-4	E_{γ} : only from 2012H110.
2352.08 8	0.20 2	2352.11	2.	0.0	0.	E2		7.38×10	$\alpha(\mathbf{K}) = 0.000236 \ 4; \ \alpha(\mathbf{L}) = 2.80 \times 10^{-5} \ 4; \alpha(\mathbf{M}) = 5.54 \times 10^{-6} \ 8; \ \alpha(\mathbf{N}) = 1.098 \times 10^{-6} \ 16; \alpha(\mathbf{O}) = 1.203 \times 10^{-7} \ 17 B(E2)(\mathbf{W}.\mathbf{u}.) = 0.22 \ 3 E = 0.000236 \ 4; \ \alpha(\mathbf{L}) = 2.80 \times 10^{-6} \ 4; \alpha(\mathbf{N}) = 1.098 \times 10^{-6} \ 16; \alpha(\mathbf{O}) = 1.203 \times 10^{-7} \ 17 B(E2)(\mathbf{W}.\mathbf{u}.) = 0.22 \ 3 \\E = 0.000236 \ 4; \ \alpha(\mathbf{L}) = 2.80 \times 10^{-6} \ 4; \alpha(\mathbf{N}) = 1.008 \times 10^{-6} \ 16; \alpha(\mathbf{O}) = 1.203 \times 10^{-7} \ 17 \\E = 0.000236 \ 4; \ \alpha(\mathbf{N}) = 0.008 \times 10^{-6} \ 16; \ \alpha(\mathbf{N}) = 0.00$
2357 22 13	0 077 14	3100.42	123	743 218	2+	D+O	+13 + 14 - 7		E_{γ} : 2555.25 14 keV from 2008Hi1/. Mult δ : from $\gamma(\theta)$ (2012Hi10)
2391.3 41	0.077 14	3135.80	1,2,3	743.218	2^{+}	עיש	11.5 117-7		E_{ν} : only from 2012Hi10.
2393.8 3	0.078 14	3137.43	2+	743.218	2+				, ,
2397.3 55		3139.9	2,3	743.218	2+				δ : tan ⁻¹ (δ)=+0.41 +148-44 gives wide range of

From ENSDF

				¹²⁰ le (1	$\mathbf{n},\mathbf{n}^{\prime}\gamma$) 1988	JOZD,2008H117	,2012H110 (co	intinued)	
γ ⁽¹²⁸ Te) (continued)										
${\rm E_{\gamma}}^{\dagger}$	I_{γ}^{\ddagger}	E _i (level)	J_i^π	E_f	\mathbf{J}_f^{π}	Mult. [#]	δ ^{#@}	α	Comments	
									negative and positive values, except δ =-0.04 to -3.0 region	
									seems not permitted.	
2405.37 19		3148.35		743.218	2^{+}				E_{γ} : only from 2012Hi10.	
2407.60 ^{&} 19		3150.84	$(6)^{+}$	743.218	2+				E_{γ} : only from 2012Hi10.	
2441.5 8		3184.84		743.218	2^{+}				E_{γ} : only from 2012Hi10.	
2445.0 4		3188.2		743.218	2^{+}	D+Q	-1.7 +17-28		Mult., δ : from $\gamma(\theta)$ (2012Hi10).	
247614		2210.2		742 010	2^+				E_{γ} : only from 2012Hi10.	
24/0.1 4	0.24.2	3219.3	2+	/43.218	2 · 0+	E2		7.84×10-4	E_{γ} : only from 2012H110. $e_{\gamma}(K) = 0.000210^{-2}$, $e_{\gamma}(L) = 2.40 \times 10^{-5}$ 4; $e_{\gamma}(M) = 4.04 \times 10^{-6}$ 7;	
2308.04 0	0.24 2	2308.00	Z	0.0	0	E2		7.84×10	$\alpha(\mathbf{K}) = 0.000210 \ 5; \ \alpha(\mathbf{L}) = 2.49 \times 10^{-7} \ 4; \ \alpha(\mathbf{M}) = 4.94 \times 10^{-7};$ $\alpha(\mathbf{M}) = 0.78 \times 10^{-7} \ 14; \ \alpha(\mathbf{O}) = 1.073 \times 10^{-7} \ 15$	
									B(E2)(Wn)=0.104 + 17 - 20	
2543.1 2	0.032 12	4063.11?		1519.998	2^{+}					
2553.3 2	0.052 13	3296.46?	$(2^+, 3, 4^+)$	743.218	2^{+}					
2587.7 2	0.054 13									
2664.4 5	0.074 14									
2098.1 3	0.062 13 0.091 17	2706 65	1+ 2+ 3+	0.0	0^{+}					
2712.2 6	0.045 12	2712.23?	$1^{+},2^{+},3^{+}$	0.0	0^{+}					
2725.2 3	0.064 13		, ,-							
2763.96 35		2763.97		0.0	0^+				E_{γ} : only from 2012Hi10.	
2785.2 3	0.088 16	2020 51	(1.0+)	0.0	0±					
2821.0 4	$0.081 \ 16$ $0.034 \ 12$	2820.71	$(1,2^{+})$	0.0	$0' 2^+$					
2869.0.3	0.034 12	2869.00?	(1.2^+)	0.0	0^{2}					
2891.34 12	0.24 2	2891.46	(1,2) 2 ⁺	0.0	0^{+}	E2		9.05×10^{-4}	$\alpha(K)=0.0001645\ 23;\ \alpha(L)=1.94\times10^{-5}\ 3;\ \alpha(M)=3.84\times10^{-6}\ 6;$	
									$\alpha(N)=7.61\times10^{-7}$ 11; $\alpha(O)=8.36\times10^{-8}$ 12	
									B(E2)(W.u.)=0.28+5-6	
2907.5 3	0.043 12									
2916.6 4	0.036 12	2721 709		742 010	2^+					
2988.2 5	0.031 12	3/31./2?		/43.218	2+ 0+				\mathbf{E} : only from 2012Hi10	
3030.1 4	0.063 14	3030.11	1.2^{+}	0.0	0^{+}				L_{γ} . Only non 20121110.	
3055.5 7	0.036 12	0000111	-,=	010	0					
3095.1 6	0.038 12	3838.4?	$(1,2^+)$	743.218	2^{+}					
3104.36 17	0.16 2	3104.40?		0.0	0^{+}				5	
3137.5 3	0.11 2	3137.43	2+	0.0	0+	E2		9.87×10 ⁻⁴	$\alpha(K)=0.0001432\ 20;\ \alpha(L)=1.686\times10^{-5}\ 24;\ \alpha(M)=3.34\times10^{-6}$ 5; $\alpha(N)=6.61\times10^{-7}\ 10$ $\alpha(O)=7.26\times10^{-8}\ 11$ B(E2)(Wu)=0.23 +7-8	
3184.80 <i>13</i>	0.15 2	3184.84		0.0	0^{+}				5(22)(mu)=0.23 17 0	
3291.6 4	0.053 13				-					
3319.8.3	0.067 14	4063.11?		743.218	2^{+}					

 $^{128}_{52}$ Te₇₆-14

From ENSDF

 $^{128}_{52}$ Te₇₆-14

 $\gamma(^{128}\text{Te})$ (continued)

 E_{γ}^{\dagger} I_{γ}^{\ddagger} $E_i(\text{level})$ J_i^{π} E_f J_f^{π}

^x3477.1 5 0.039 *12* ^x3804.9 7 0.033 *12*

 $3838.3 9 \quad 0.039 \ 12 \quad 3838.4? \quad (1,2^+) \quad 0.0 \ 0^+$

[†] From 1988GoZD unless otherwise stated.

[‡] Relative to I(743.22 γ)=100, measured at θ =90° to the neutron beam direction (1988GoZD).

[#] Multipolarities and mixing ratios are based on linear polarization measurements and on A₂ and A₄ values in $\gamma(\theta)$ (1988GoZD) unless otherwise stated.

[@] If No value given it was assumed $\delta = 1.00$ for E2/M1, $\delta = 1.00$ for E3/M2 and $\delta = 0.10$ for the other multipolarities.

[&] Placement of transition in the level scheme is uncertain.

 $x \gamma$ ray not placed in level scheme.

¹²⁸₅₂Te₇₆

¹²⁸₅₂Te₇₆

¹²⁸₅₂Te₇₆

¹²⁸₅₂Te₇₆