Coulomb excitation 2011Al25,2013Al10,2005Ra09

History								
Туре	Author	Citation	Literature Cutoff Date					
Full Evaluation	Zoltan Elekes and Janos Timar	NDS 129, 191 (2015)	28-Feb-2015					

2011Al25: E=3 MeV/nucleon ¹²⁸Sn beam was produced from the Holifield Radioactive Ion Beam Facility (HRIBF). Targets of a natural ¹²C and a 90.5% enriched ⁵⁰Ti. Recoiling target nuclei were detected in the HyBall array of CsI crystals and γ rays were detected by 11 HPGe segmented clover detectors of the CLARION array, 2.94% total efficiency at 1 MeV. Measured E γ , particle- γ coincidence. Deduced quadrupole moments, B(E2) values. GOSIA code used in the analysis.

2013Al10: Beam=¹²⁸Sn, ≈ 3 MeV/nucleon. Targets=carbon and titanium. Measurement of g-factor of first 2⁺ state by recoil-in-vacuum technique following Coulomb excitation. Experiments carried out at Holifield Radioactive Ion Beam Facility (HRIBF) at ORNL. The (Particle) $\gamma(\theta)$ were measured using three rings of the bare HyBall array and three rings of the Clarion array. The attenuation of 9 angular correlations were used to determine magnitude of $g\tau$ value. Comparison with shell-model calculations.

Others: 2005Ra09, 2005Ra32, 2004Ra27, 2002Ra46 papers are coming from the HRIBF group which published a more sophisticated, new measurement and analysis in 2011Al25.

¹²⁸Sn Levels

E(level)	\mathbf{J}^{π}	T _{1/2}	Comments		
0 1169.0 <i>10</i>	0 ⁺ (2) ⁺	1.63 ps 10	 B(E2)↑=0.080 5 (2011Al25); g=(-)0.23 (2013Al10) E2 matrix element=(+)0.282 9 (2011Al25). Input E2 matrix elements for other states are listed in Table I of 2011Al25. Diagonal E2 matrix element=-0.0 24 without including high-lying states; -0.17 25 (positive interference term) and +0.11 25 (negative interference term) with high-lying states included. Q=-0.02 18 without including high-lying states; -0.13 19 (positive interference term) and -0.08 19 (negative interference term) with high-lying states included. T_{1/2}: from B(E2) (2011Al25). g: from gτ=0.55 12, average of six values obtained using carbon and titanium targets. Sign is not 		
2000 [†] 2078? ^{†‡} 2104 [†] 2192? ^{†‡}	(4^+) 4^+ $(2)^+$ 0^+ 1		given by this method, it is taken from systematics of even-A on nuclei.		

[†] Level included in the Coulomb excitation analysis of matrix element.

[‡] Estimated from extrapolated systematics.

 $\gamma(^{128}\text{Sn})$

Eγ	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}
1169	1169.0	$(2)^{+}$	0	0^{+}

Coulomb excitation 2011Al25,2013Al10,2005Ra09

Level Scheme

