128 In β^- decay (0.84 s) 1979Fo10

History							
Туре	Author	Citation	Literature Cutoff Date				
Full Evaluation	Zoltan Elekes and Janos Timar	NDS 129, 191 (2015)	28-Feb-2015				

Parent: ¹²⁸In: E=0.0; $J^{\pi}=(3)^+$; $T_{1/2}=0.84$ s 6; $Q(\beta^-)=922\times10^1$ 15; % β^- decay=100.0

1979Fo10: ²³⁵U(n,F) E=th, on-line mass separation; Ge detector, $\gamma\gamma$; scintillator-scintillator $\beta\gamma$.

1986Go10: ²³⁵U(n,F) E=th, on-line mass separation; γ , B. The decay scheme of ¹²⁸In is that proposed by 1979Fo10. The levels connected with γ -transitions to g.s. and lowest-2⁺ level, and transitions coincident with them, were assigned to this decay (see also 0.72 s decay). No β^- transition to the 4⁺ level at 2000.35 keV was assumed.

I β : calculated by evaluators from γ intensities and their uncertainties given in 1979Fo10.

¹²⁸Sn Levels

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	Comments
0.0	0+	59.07 min 14	$T_{1/2}$: from Adopted Levels.
1168.82 4	$(2)^{+}$		J^{π} : log ft=5.92 of this dataset suggests (2,3,4) ⁺ .
2104.07 5	$(2)^{+}$		J^{π} : log ft=5.81 of this dataset suggests (2,3,4) ⁺ .
2258.36 6	$(2)^{+}$		J^{π} : log ft=6.31 of this dataset suggests (2,3,4).
2274.06 10	$(2^{-},3,4^{+})$		J^{π} : log <i>ft</i> =6.81 of this dataset suggests (2,3,4).
2578.62 8	$(2)^{+}$		J^{π} : log ft=6.40 of this dataset suggests (2,3,4).
2633.09 9	$(2^{-},3,4^{+})$		J^{π} : log <i>ft</i> =6.43 of this dataset suggests (2,3,4).
2642.27 6	$(2^{-},3,4^{+})$		J^{π} : log <i>ft</i> =6.47 of this dataset suggests (2,3,4).
2756.54 9	$(2^{-},3,4^{+})$		J^{π} : log <i>ft</i> =6.91 of this dataset suggests (2,3,4).
2952.46 9	$(2^{-},3,4^{+})$		J^{π} : log <i>ft</i> =6.54 of this dataset suggests (2,3,4).
3091.97 8	$(2^{-},3,4^{+})$		J^{π} : log <i>ft</i> =6.43 of this dataset suggests (2,3,4).
3225.6 <i>3</i>	$(2)^{+}$		J^{π} : log <i>ft</i> =6.48 of this dataset suggests (2,3,4).
3519.86 9	$(2)^{+}$		J^{π} : log ft=5.21 of this dataset suggests (2,3,4) ⁺ .
3886.39 <i>13</i>	$(2)^{+}$		J^{π} : log ft=5.76 of this dataset suggests (2,3,4) ⁺ .
3954.85 9	$(2)^{+}$		J^{π} : log ft=5.55 of this dataset suggests (2,3,4) ⁺ .
3997.61 9	$(3,4)^+$		J^{π} : log ft=5.75 of this dataset suggests (2,3,4) ⁺ .
4038.01 13	$(2)^{+}$		J^{π} : log ft=5.93 of this dataset suggests (2,3,4) ⁺ .
4075.03 10	$(3,4)^+$		J^{π} : log ft=5.79 of this dataset suggests (2,3,4) ⁺ .
4219.87 9	$(3,4)^+$		J^{π} : log ft=5.71 of this dataset suggests (2,3,4) ⁺ .
4227.2 <i>3</i>	$(2)^{+}$		J^{π} : log <i>ft</i> =6.26 of this dataset suggests (2,3,4).
4297.70 14	$(2)^{+}$		J^{π} : log ft=5.09 of this dataset suggests (2,3,4) ⁺ .
4509.8 10	$(2)^{+}$		J^{π} : log <i>ft</i> =6.81 of this dataset suggests (2,3,4).

[†] E(levels) are based on a least-squares fit to the $E\gamma's$.

[‡] From Adopted Levels.

 β^{-} radiations

E(decay)	E(level)	$I\beta^{-\dagger}$	Log ft	Comments
$(4.71 \times 10^3 \ 15)$	4509.8	0.20 8	6.81 19	av E β =2051 71
5.01×10 ³ 16	4297.70	12.9 12	5.09 8	av E β =2152 72
				E(decay): weighted average of 4.98 MeV 18 and 5.10 MeV 34 (1978Al18).
$(4.99 \times 10^3 \ 15)$	4227.2	0.91 22	6.26 13	av E β =2185 72
$(5.00 \times 10^3 \ 15)$	4219.87	3.3 <i>3</i>	5.71 8	av Eβ=2189 72
$(5.14 \times 10^3 \ 15)$	4075.03	3.1 <i>3</i>	5.79 8	av Eβ=2257 72
$(5.18 \times 10^3 \ 15)$	4038.01	2.29 24	5.93 8	av E β =2275 72
$(5.22 \times 10^3 \ 15)$	3997.61	3.66 24	5.75 7	av Eβ=2294 72
$(5.27 \times 10^3 \ 15)$	3954.85	5.9 5	5.55 8	av E β =2314 72
$(5.33 \times 10^3 \ 15)$	3886.39	3.9 4	5.76 8	av Eβ=2347 72

Continued on next page (footnotes at end of table)

128 In β^- decay (0.84 s) 1979Fo10 (continued)

β^- radiations (continued)						
E(decay)	E(level)	$I\beta^{-\dagger}$	Log ft		Comments	
$(5.70 \times 10^3 \ 15)$	3519.86	18.5 19	5.21 8	av Eβ=2521 72		
$(5.99 \times 10^3 \ 15)$	3225.6	1.24 14	6.48 8	av E β =2660 72		
$(6.13 \times 10^3 \ 15)$	3091.97	1.55 16	6.43 8	av E β =2724 72		
$(6.27 \times 10^3 \ 15)$	2952.46	1.32 17	6.54 8	av E β =2790 72		
$(6.46 \times 10^3 \ 15)$	2756.54	0.65 25	6.91 18	av Eβ=2883 72		
$(6.58 \times 10^3 \ 15)$	2642.27	1.93 10	6.47 6	av Eβ=2937 72		
$(6.59 \times 10^3 \ 15)$	2633.09	2.1 3	6.43 9	av Eβ=2941 72		
$(6.64 \times 10^3 \ 15)$	2578.62	2.36 21	6.40 7	av E β =2967 72		
$(6.95 \times 10^3 \ 15)$	2274.06	1.12 16	6.81 9	av Eβ=3111 71		
$(6.96 \times 10^3 \ 15)$	2258.36	3.6 7	6.31 10	av Eβ=3119 71		
$(7.12 \times 10^3 \ 15)$	2104.07	12.6 10	5.81 7	av Eβ=3192 71		
$(8.05 \times 10^3 \ 15)$	1168.82	17 6	5.92 16	av E β =3635 71		

[†] Absolute intensity per 100 decays.

 $\gamma(^{128}\text{Sn})$

I γ normalization: Σ I γ (to g.s.)=100 and no β ⁻feeding to g.s.

Eγ	$I_{\gamma}^{\#}$	E_i (level)	\mathbf{J}_i^{π}	E_f	J_f^π	Comments
310.48 ^{†‡} 20	0.18 4	2952.46	(2 ⁻ ,3,4 ⁺)	2642.27	$(2^{-},3,4^{+})$	
x384.03 [†] 25 449.67 7	0.15 <i>4</i> 0.55 <i>7</i>	3091.97	(2 ⁻ ,3,4 ⁺)	2642.27	(2 ⁻ ,3,4 ⁺)	
^x 468.0 [†] 3	0.11 4					
474.50 ^{†‡} 15 538.16 5 583.3 3	0.26 <i>6</i> 1.20 <i>8</i> 0.24 <i>6</i>	2578.62 2642.27 3225.6	$(2)^+$ $(2^-,3,4^+)$ $(2)^+$	2104.07 2104.07 2642.27	$(2)^+$ $(2)^+$ $(2^-,3,4^+)$	
^x 704.06 [†] 15	0.42 6					
x760.2 [†] 3	0.22 7					
886.88 ^{†‡} 15 935.20 5 1045.19 25	0.45 <i>10</i> 8.0 <i>5</i> 0.36 <i>10</i>	3519.86 2104.07 3997.61	$(2)^+$ $(2)^+$ $(3,4)^+$	2633.09 1168.82 2952.46	$(2^{-},3,4^{+})$ $(2)^{+}$ $(2^{-},3,4^{+})$	I_{γ} : other: 6.5 6 per 100 decays (1986Go10).
^x 1082.19 [†] 20	0.42 7					
1089.53 <i>10</i> 1105.20 <i>10</i>	7.4 5 1.5 <i>1</i>	2258.36 2274.06	$(2)^+$ $(2^-,3,4^+)$	1168.82 1168.82	$(2)^+$ $(2)^+$	
x1123.13 [†] 15 1130.31 25 1168.80 5	0.48 6 0.26 6 50 3	3886.39 1168.82	$(2)^+$ $(2)^+$	2756.54	$(2^{-},3,4^{+})$ 0^{+}	
^x 1236.46 [†] 25	0.31 7	1100.02	(2)	0.0	0	
1241.01 <i>10</i> 1281.42 <i>15</i> 1400 80 <i>10</i>	0.9 <i>1</i> 0.59 7	3997.61 4038.01	$(3,4)^+$ $(2)^+$ $(2)^+$	2756.54 2756.54	$(2^{-},3,4^{+})$ $(2^{-},3,4^{+})$	
1469.80 10 1464.31 10 1473.55 10	1.1 <i>I</i> 2.5 2 1.7 <i>I</i>	2633.09 2642.27	$(2)^{+}$ $(2^{-},3,4^{+})$ $(2^{-},3,4^{+})$	1168.82 1168.82 1168.82	$(2)^+$ $(2)^+$ $(2)^+$	
^x 1514.79 [†] 25 1587.69 <i>15</i> ^x 1593.6 [†] 3	0.42 <i>10</i> 2.4 2 0.34 7	2756.54	(2 ⁻ ,3,4 ⁺)	1168.82	(2) ⁺	

Continued on next page (footnotes at end of table)

¹²⁸In β^{-} decay (0.84 s) 1979Fo10 (continued)

E_{γ}	$I_{\gamma}^{\#}$	E_i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_f^{π}
$x_{1678.4}^{\dagger}$ 3	0.36 7				
1696.51 10	1.3 1	3954.85	$(2)^{+}$	2258.36	$(2)^{+}$
1739.32 10	2.0 1	3997.61	$(3,4)^+$	2258.36	$(2)^{+}$
1783.56 10	1.57	2952.46	$(2^{-},3,4^{+})$	1168.82	$(2)^{+}$
1816.65 10	2.4 2	4075.03	(3,4)+	2258.36	(2)+
1893.2 ^{†‡} 3	0.40 10	3997.61	$(3.4)^+$	2104.07	$(2)^{+}$
1923.27 15	1.0 1	3091.97	$(2^{-},3,4^{+})$	1168.82	$(2)^{+}$
1945.62 25	0.38 10	4219.87	$(3.4)^+$	2274.06	$(2^{-},3,4^{+})$
1961.48 10	1.2 1	4219.87	$(3,4)^+$	2258.36	(2)+
^x 1967.8 [†] 4	0.31 10				
2104.07 10	6.5 4	2104.07	$(2)^{+}$	0.0	0^{+}
$x_{2205.2}^{\dagger}$ 5	0.37 10				
2258.46 10	3.1 2	2258.36	$(2)^{+}$	0.0	0^{+}
2350.90 15	1.4 <i>1</i>	3519.86	$(2)^{+}$	1168.82	$(2)^{+}$
2578.60 15	1.0 <i>1</i>	2578.62	$(2)^{+}$	0.0	0^{+}
2785.83 25	0.70 10	3954.85	$(2)^{+}$	1168.82	$(2)^{+}$
2906.18 15	0.72 10	4075.03	$(3,4)^+$	1168.82	$(2)^{+}$
3051.09 15	1.7 2	4219.87	$(3,4)^+$	1168.82	$(2)^{+}$
3058.2 9	0.62 20	4227.2	$(2)^{+}$	1168.82	$(2)^{+}$
3128.84 20	1.1 <i>1</i>	4297.70	$(2)^{+}$	1168.82	$(2)^{+}$
3225.8 5	1.0 <i>1</i>	3225.6	$(2)^{+}$	0.0	0^{+}
3519.81 <i>15</i>	16.6 15	3519.86	$(2)^{+}$	0.0	0^{+}
3886.16 15	3.6 <i>3</i>	3886.39	$(2)^{+}$	0.0	0^{+}
3954.75 15	3.9 <i>3</i>	3954.85	$(2)^{+}$	0.0	0^{+}
4038.03 20	1.7 2	4038.01	$(2)^{+}$	0.0	0^{+}
4227.1 3	0.29 7	4227.2	$(2)^{+}$	0.0	0^{+}
4297.61 20	11.8 8	4297.70	$(2)^{+}$	0.0	0^{+}
4509.7 10	0.20 7	4509.8	$(2)^{+}$	0.0	0^{+}

[†] Isomeric assignment uncertain.

* Not placed in the decay scheme in 1979Fo10.
For absolute intensity per 100 decays, multiply by 1.00 6.

 $x \gamma$ ray not placed in level scheme.

 $\gamma(^{128}\text{Sn})$ (continued)

 $^{128}_{50}Sn_{78}\text{-}4$