¹²⁸In β^- decay (0.72 s) 1979Fo10,1981Fo02

History							
Туре	Author	Citation	Literature Cutoff Date				
Full Evaluation	Zoltan Elekes and Janos Timar	NDS 129, 191 (2015)	28-Feb-2015				

Parent: ¹²⁸In: E=3.4×10² 6; J^{π}=(8⁻); T_{1/2}=0.72 s *10*; Q(β ⁻)=922×10¹ *15*; % β ⁻ decay=100.0

1979Fo10: ²³⁵U(n,F) E=th, on-line mass separation; Ge detector, $\gamma\gamma$; Ge ce, scintillator-scintillator $\beta\gamma$, $\beta\gamma$ (t).

1981Fo02: same setup and authors as 1979Fo10; measured $T_{1/2}$ (2491), multipolarity (79 γ , 321 γ).

The decay scheme of ¹²⁸In is that proposed by 1979Fo10. The levels connected with γ -cascades to (5⁻) and (7⁻), based on the coincidence relations, were assigned to this decay.

¹²⁸Sn Levels

E(level) [†]	\mathbf{J}^{π}	T _{1/2}	Comments
0.0	0+	59.07 min 14	$T_{1/2}$: from Adopted Levels.
1168.81 5	$(2)^{+}$		·/~ ·
2000.35 7	(4 ⁺)		
2091.48 11	(7 ⁻)	6.5 s 5	$T_{1/2}$: from decay of 91.15 γ .
2120.89 9	(5 ⁻)	8.6 ns 8	$T_{1/2}$: from $\beta \gamma(t)$.
2378.06 13	(7-)		
2412.69 12	(8 ⁺)	<40 ns	$T_{1/2}$: from time distribution of 321γ (1981Fo02).
2491.89 17	(10^{+})	2.69 μs 23	$T_{1/2}$: From time distribution of 79.28 γ (1981Fo02).
2547.08 11	(7^{-})		
2959.47 21	(7,8,9)		
3175.77 12	(7^{-})		
3383.11 16	(7 ⁻)		
3608.48 19	$(7, 8, 9^{-})$		
3633.44 13			
3769.06 19	(7,8,9)		
38/1.46 15	(7,8,9)		
3958.53 15	(7,8,9)		
3987.5 3	(7,8,9 ⁻)		
4065.34 15	(9)		
4213.61 15	(7,8,9)		
4243.01 16	(/ ,8 ,9)		
4898.00 20	(/ ,8 ,9 ⁻)		

[†] E(levels) are based on a least-squares fit to the $E\gamma's$.

 β^{-} radiations

E(decay)	E(level)	Ι <i>β</i> -†‡	Log ft	Comments
$(4.66 \times 10^3 \ 16)$	4898.00	2.4 4	5.65 12	av Eβ=2029 77
$(5.32 \times 10^3 \ 16)$	4243.01	2.2 4	5.93 12	av E β =2339 77
$(5.35 \times 10^3 \ 16)$	4213.61	3.8 5	5.71 11	av E β =2353 77
$(5.49 \times 10^3 \ 16)$	4065.34	20.4 23	5.03 10	av E β =2423 77
$(5.57 \times 10^3 \ 16)$	3987.5	0.87 22	6.43 14	av E β =2460 77
5.43×10 ³ 22	3958.53	32 4	4.87 10	av $E\beta = 2474.77$
				E(decay): from $\beta\gamma$ (1978Al18).
$(5.69 \times 10^3 \ 16)$	3871.46	3.4 5	5.88 11	av E β =2515 77
$(5.79 \times 10^3 \ 16)$	3769.06	1.40 25	6.29 12	av Eβ=2564 77
$(5.95 \times 10^3 \ 16)$	3608.48	1.50 25	6.32 11	av E β =2640 77
$(6.18 \times 10^3 \ 16)$	3383.11	0.4 3	7.0 4	av E β =2747 77
$(6.38 \times 10^3 \ 16)$	3175.77	2.1 7	6.31 17	av E β =2845 77
$(6.60 \times 10^3 \ 16)$	2959.47	0.86 20	6.76 13	av Eβ=2948 77

Continued on next page (footnotes at end of table)

¹²⁸In β^- decay (0.72 s) 1979Fo10,1981Fo02 (continued)

β^{-} radiations (continued)

E(decay)	E(level)	$I\beta^{-\dagger\ddagger}$	Log ft		Comments	
$(7.01 \times 10^3 \ 16)$	2547.08	≈0	≈7.7	av Eβ=3018 65		
$(7.07 \times 10^3 \ 16)$	2491.89	7.2 21	5.97 15	av Eβ=3169 77		
$(7.15 \times 10^3 \ 16)$	2412.69	≈ 0	≈8.1	av Eβ=3082 65		
$(7.18 \times 10^3 \ 16)$	2378.06	4.7 6	6.19 10	av Eβ=3223 77		
$(7.47 \times 10^3 \ 16)$	2091.48	14 12	5.8 4	av Eβ=3359 77		

[†] Calculated by evaluators from γ intensities and their uncertainties given in 1979Fo10. The transition intensity out of the lowest-lying 5⁻ and 7⁻ levels has been taken to represent 100% of the decay of the high-spin isomer of the parent. The I(γ +ce) feeding these levels only amounts to 82.5%. The remaining intensity is being attributed to direct β ⁻transition from (8)⁻ parent to (7⁻) isomer in ¹²⁸Sn.

[‡] Absolute intensity per 100 decays.

$\gamma(^{128}\text{Sn})$

Iy normalization: from Iy(to g.s.)=100 and no β^{-} feedings to g.s..

E_{γ}^{\dagger}	$I_{\gamma}^{\dagger}\&$	E_i (level)	\mathbf{J}_i^π	E_f	\mathbf{J}_f^{π}	Mult. [@]	α^{a}	Comments
79.28 15	1.8 4	2491.89	(10 ⁺)	2412.69	(8 ⁺)	E2	3.64	$\begin{aligned} \alpha(K) = 2.42 \ 4; \ \alpha(L) = 0.982 \ 16; \\ \alpha(M) = 0.201 \ 4; \ \alpha(N) = 0.0354 \ 6; \\ \alpha(O) = 0.001331 \ 21 \\ B(E2)(W.u.) = 0.37 \ 4 \\ Mult.: From ce \ (1981Fo02). \end{aligned}$
91.15 <i>10</i>	3.1 [#] 4	2091.48	(7 ⁻)	2000.35	(4+)	E3	26.3	α (K)exp=8.1 24 α (K)=9.62 14; α (L)=13.31 21; α (M)=2.84 5; α (N)=0.494 8; α (O)=0.01410 22 R(F3)(Wu) = 0.136 11
120.54 5	11.1 <i>10</i>	2120.89	(5 ⁻)	2000.35	(4+)	E1	0.1069	$\begin{array}{l} \alpha(K) \exp = 0.08 \ 2 \\ \alpha(K) = 0.0926 \ 13; \ \alpha(L) = 0.01159 \ 17; \\ \alpha(M) = 0.00225 \ 4; \ \alpha(N) = 0.000417 \ 6; \\ \alpha(O) = 3.21 \times 10^{-5} \ 5 \\ B(E1)(W, u) = 1.60 \times 10^{-5} \ 15 \end{array}$
207.46 15	0.46 10	3383.11	(7 ⁻)	3175.77	(7 ⁻)			D(L1)(W.u.)=1.00×10 15
257.17 10	4.4 3	2378.06	(7 ⁻)	2120.89	(5 ⁻)			
321.22 7	10.5 7	2412.69	(8+)	2091.48	(7 ⁻)	E1	0.00716	α (K)=0.00623 9; α (L)=0.000754 11; α (M)=0.0001469 21; α (N)=2.75×10 ⁻⁵ 4; α (O)=2.28×10 ⁻⁶ 4 B(E1)(W.u.)=2.0×10 ⁻⁷ Mult.: From ce (1981Fo02).
^x 384.03 25	0.36 10							
426.19 7 457.68 7	1.6 2 2.1 2	2547.08 3633.44	(7 ⁻)	2120.89 3175.77	(5 ⁻) (7 ⁻)			
468.0 [‡] 3 546.59 20 609.55 15 ^x 704.06 15 ^x 760.2 3	0.26 <i>10</i> 0.60 <i>15</i> 0.87 <i>15</i> 1.0 <i>1</i> 0.53 <i>15</i>	2959.47 2959.47 4243.01	(7,8,9) (7,8,9) (7 ⁻ ,8 ⁻ ,9 ⁻)	2491.89 2412.69 3633.44	(10 ⁺) (8 ⁺)			
763.12 <i>15</i> 811.78 <i>25</i>	1.1 2 0.87 20	3175.77 3987.5	(7 ⁻) (7,8,9 ⁻)	2412.69 3175.77	(8 ⁺) (7 ⁻)			

Continued on next page (footnotes at end of table)

				$\gamma(1)$	¹²⁸ Sn) (continued)
E_{γ}^{\dagger}	$I_{\gamma}^{\dagger}\&$	E _i (level)	\mathbf{J}_i^{π}	E_f	J_f^π
831.54.5	100 [#] 5	2000.35	(4^{+})	1168.81	$(2)^{+}$
^x 904.29 10	3.0 3				(-)
1054.91 10	5.8 5	3175.77	(7-)	2120.89	(5 ⁻)
1061.39 15	1.5 2	3608.48	$(7,8,9^{-})$	2547.08	(7 ⁻)
1067.25 15	1.3 2	4243.01	$(7^{-}, 8^{-}, 9^{-})$	3175.77	(7-)
^x 1082.19 20	1.0 2				
^x 1123.13 <i>15</i>	1.2 2				
1168.80 5	100 [#] 5	1168.81	$(2)^{+}$	0.0	0^{+}
^x 1236.46 25	0.8 2				
1261.81 25	0.9 2	3383.11	(7 ⁻)	2120.89	(5 ⁻)
1264.61 20	1.4 2	4898.00	$(7^{-}, 8^{-}, 9^{-})$	3633.44	
1356.36 15	1.4 2	3769.06	(7,8,9)	2412.69	(8 ⁺)
1514.79 [‡] 25	1.0 2	4898.00	$(7^{-}, 8^{-}, 9^{-})$	3383.11	(7 ⁻)
1573.37 25	0.9 2	4065.34	(9 ⁻)	2491.89	(10^{+})
^x 1593.6 3	0.8 2				
^x 1678.4 3	0.9 2				
1779.97 10	3.4 <i>3</i>	3871.46	$(7^{-}, 8^{-}, 9^{-})$	2091.48	(7 ⁻)
1867.04 10	32.3 20	3958.53	$(7^{-}, 8^{-}, 9^{-})$	2091.48	(7-)
^x 1967.8 4	0.8 2				
1973.86 10	19.5 10	4065.34	(9 ⁻)	2091.48	(7 ⁻)
2122.11 10	3.8 <i>3</i>	4213.61	$(7^{-}, 8^{-}, 9^{-})$	2091.48	(7 ⁻)
^x 2205.2 5	0.9 2				

¹²⁸In β^- decay (0.72 s) 1979Fo10,1981Fo02 (continued)

[†] From 1979Fo10, unless otherwise noted.

[‡] Not placed in the decay scheme in 1979Fo10.

[#] These γ rays follow the 6.5 s half-life of the (7⁻) level at 2378 keV in ¹²⁸Sn. Due to difficulties in obtaining sources with indium and tin in equilibrium, the uncertainties in the intensities of these γ rays may amount to about 25% (1979Fo10).

[@] From $\alpha(K)$ exp.

& For absolute intensity per 100 decays, multiply by 1.0 1.

^{*a*} Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

 $x \gamma$ ray not placed in level scheme.

128 In β^- decay (0.72 s) 1979Fo10,1981Fo02

