¹²⁸Sn IT decay (2.91 μs) 2010At03

History									
Туре	Author	Citation	Literature Cutoff Date						
Full Evaluation	Zoltan Elekes and Janos Timar	NDS 129, 191 (2015)	28-Feb-2015						

Parent: ¹²⁸Sn: E=2491.91 *17*; J^{π} =(10⁺); $T_{1/2}$ =2.91 µs *14*; %IT decay=100.0

2010At03: ^{128m}Sn produced in the reactions: ⁹Be(¹³⁶Xe,X) E=600 MeV/nucleon, beam provided by the GSI heavy-ion synchrotron at GSI facility. Fully stripped ions of ¹²⁸Sn were separated and identified with the two-stage high-resolution magnetic zero degree frs. Mass to charge ratio was measured by time-of-flight and the magnetic rigidity $\beta\rho$. The isomeric sample is spin oriented. Momentum distribution of the fragments was measured with the frs settings. The selected ions were finally implanted in a 2 mm thick copper plate fixed to a thick plastic degrader. The isomeric γ rays were measured with eight cluster Ge detectors placed at ±45°, ±75°, ±105° and ±135° relative to the beam direction. Ion- γ coincidences were used as trigger of the data acquisition system. The g-factor was determined by time-differential perturbed angular distribution (TDPAD) method.

 $R(t,\theta,\omega_L)=(I(t,\theta,\omega_L)-\varepsilon I(t,\theta+\pi/2,\omega_L)) / (I(t,\theta,\omega_L)-\varepsilon I(t,\theta+\pi/2,\omega_L))$ where I is the intensity of the isomeric transition, θ is the detection angle, ε is the normalization factor, ω_L is the Larmor frequency.

¹²⁸Sn Levels

J^{π}	T _{1/2}	Comments
0^{+}		
$(2)^{+}$		
(4^{+})		
(7^{-})	6.5 s 5	%IT=100
		$T_{1/2}$: from Adopted Levels.
(5^{-})		
(8^+)		
(10^{+})	2.69 µs 23	%IT=100
		g=-0.204 (2010At03)
		g: TDPAD method (2010At03). Comparison with shell-model calculations confirm dominance
		of $\gamma h_{1/2}^{-2}$ configuration.
		$T_{1/2}$: from ^{11/2} $\sin \beta^{-}$ decay (0.72 s).
	$\frac{J^{\pi}}{0^{+}}$ (2) ⁺ (4 ⁺) (7 ⁻) (5 ⁻) (8 ⁺) (10 ⁺)	$\begin{array}{c c} J^{\pi} & T_{1/2} \\ \hline 0^{+} \\ (2)^{+} \\ (4^{+}) \\ (7^{-}) & 6.5 \text{ s } 5 \\ \hline (5^{-}) \\ (8^{+}) \\ (10^{+}) & 2.69 \ \mu \text{s } 23 \end{array}$

[†] The level scheme presented in 2010At03 is not based on their measurements. Levels are taken from Adopted Levels.

$\gamma(^{128}\text{Sn})$

E_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}	Mult.	α^{\ddagger}	Comments
79	2492	(10^{+})	2413	(8^{+})			
91	2092	(7 ⁻)	2001	(4 ⁺)	E3	26.5	α (K)=9.68 <i>14</i> ; α (L)=13.44 <i>19</i> ; α (M)=2.87 <i>4</i> ; α (N)=0.498 <i>7</i> ; α (O)=0.01422 <i>20</i>
120	2121	(5 ⁻)	2001	(4^{+})			
321	2413	(8^{+})	2092	(7^{-})			R(t) function of this γ was measured (see Fig. 5 in 2010At03).
832	2001	(4^{+})	1169	$(2)^{+}$			
1169	1169	$(2)^{+}$	0.0	0^{+}			

[†] Only the 321γ was detected in 2010At03. Rounded energies are taken from Adopted Gammas.

[‡] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

128 Sn IT decay (2.91 μ s) 2010At03

Decay Scheme

%IT=100.0

 $^{128}_{50}{
m Sn}_{78}$