Adopted Levels, Gammas

History											
Туре		2	Author		Citation	Literature Cutoff Date					
	Full Evalu	uation Zolta	n Elekes and J	anos Timar	NDS 129, 191 (2015)	28-Feb-2015					
$Q(\beta^{-})=922\times10^{1}$ 15; $S(n)=532\times10^{1}$ 15; $S(p)=1294\times10^{1}$ 15; $Q(\alpha)=-1037\times10^{1}$ 29 2012Wa38 E,I γ ,M, α (exp): from ¹²⁸ Cd β^{-} decay.											
¹²⁸ In Levels											
Cross Reference (XREF) Flags											
A 128 Cd β^- decay B 241 Pu(n,F) E=thermal											
E(level)	J^{π} T_1	/2 XREF	1		Commer	nts					
0.0	(3) ⁺ 0.84	s 6 AB	AB $\%\beta^-=100; \%\beta^-n<0.046$ $\%\beta^-n$ given for mixture of g.s. and 340-keV, 8 ⁻ state. Value is weighted average of 0.059 8 from n and β counting (1980Lu04), 0.030 7 from β n coincidence (1986ReZU), and 0.040 3 from n- and β^- counting (1993Ru01). 1993Ru01 suggest $\%\beta^-n=0.06$ if all neutrons originate from the decay of the g.s. Other:<0.2 from n and β counting (1981En05). J ^{π} : γ from 1 ⁺ , no β^- feeding from 0 ⁺ , and systematics for the g.s. in lighter In isotopes (1988FoZX). T _{1/2} : from γ -multiscaling (1986Go10). Other reported values of 0.80 s 3 (1974Gr29), 0.94 s 5 (1976Lu02), 0.9 s 1 (1977FoZR), 0.83 s 2 (1981En05), and 0.776 s 24 (1993Ru01) were given for the mixture of g.s. and (8) ⁻ state.								
247.87 10 (1 ⁻) 23 μs 2			$T_{1/2}$: from (1988For	T _{1/2} : from time distribution of 248 keV γ (2004Sc42). Other: 10 μ s <t<sub>1/2<20 ms (1988FoZX).</t<sub>							
315.86 <i>13</i> (1 ⁻) A 3.4×10 ² 6 (8 ⁻) 0.72 s <i>10</i> A			J [*] : compar J ^{π} : M1 γ t % β^{-} =100; No IT dec: expected % β^{-} n give % β^{-} n=0 commen E(level): fr J ^{π} : log ft \approx T _{1/2} : from g.s	 J[*]: comparison to shell-model. J^π: M1 γ to (1⁻), γ from 1⁺. %β⁻=100; %β⁻n<0.046 No IT decay is expected, since the multipolarity of the isomeric transition is expected to be high. %β⁻n given for mixture of g.s. and 340-keV (8⁻) state. 1993Ru01 suggest %β⁻n=0.121 if all neutrons originate from the decay of this (8⁻) level. See the comment on %β⁻n for g.s E(level): from βγ (1990St13). J^π: log ft≈5.8 to (7⁻), systematics of the 8⁻ states in lighter In isotopes. T_{1/2}: from γ-multiscaling (1986Go10). Others: see the comment given under the g.s 							
710.37 <i>24</i> 1172.88 <i>14</i>	1 ⁺	A AB	J^{π} : log $ft = 0$	4.17 from 0 ⁺							
				$\gamma(^{128})$	<u>[n]</u>						
E_i (level) J_i^{π}	E_{γ}	I _γ E	$f J_f^{\pi} M$	ſult. α		Comments					
247.87 (1 ⁻)	247.92 10	100 0	$.0 (3)^+ M$	2,E3 0.25	$\begin{array}{c} 4 \\ \alpha(\exp) = 0.25 \ 4 \\ \alpha(K) = 0.196 \ 15; \ \alpha(I) \\ \alpha(N) = 0.0015 \ 6 \end{array}$	L)=0.042 <i>16</i> ; α (M)=0.009 <i>4</i> ; α (Q)=7.7×10 ⁻⁵ <i>10</i>					
315.86 (1 ⁻)	68.02 <i>10</i>	100 247	.87 (1 ⁻) (N	11) 1.536	$\begin{array}{c} \alpha(\text{x}) = 0.0013 \ 0, \\ \alpha(\text{exp}) = 1.55 \\ \alpha(\text{K}) = 1.328 \ 20; \ \alpha(\text{I}) \\ \alpha(\text{N}) = 0.00601 \ 9; \end{array}$	$\alpha(\text{exp})=1.55 \alpha(\text{K})=1.328 \ 20; \ \alpha(\text{L})=0.1689 \ 25; \ \alpha(\text{M})=0.0328 \ 5; \alpha(\text{N})=0.00601 \ 9; \ \alpha(\text{O})=0.000442 \ 7$					
710.37	462.7 [†] 3	100 [†] 247	87 (1 ⁻)								

Adopted Levels, Gammas (continued)

$\gamma(^{128}\text{In})$	(continued)
$\gamma(1-0 \text{In})$	(continued)

E _i (level)	\mathbf{J}_i^{π}	Eγ	Iγ	E_f	\mathbf{J}_{f}^{π}
1172.88	1+	462.7 [†] 3	3.6	710.37	
		857.05 10	100	315.86	(1^{-})
		925.0 <i>3</i>	13	247.87	(1^{-})
		1172.4 <i>3</i>	11	0.0	$(3)^{+}$

 † Multiply placed with intensity suitably divided.

Adopted Levels, Gammas

Level Scheme

Intensities: Relative photon branching from each level @ Multiply placed: intensity suitably divided

 $^{128}_{\ 49} \mathrm{In}_{79}$