9 Be(136 Xe,X γ),(238 U,X) **2009Ca02**

Type Author Citation Literature Cutoff Date

Full Evaluation Zoltan Elekes and Janos Timar NDS 129, 191 (2015) 28-Feb-2015

2009Ca02: E=750 MeV/nucleon 136 Xe beam produced at the SIS accelerator complex at GSI. The reaction 9 Be(238 U,X) with a beam energy of 650 MeV/nucleon was also performed. GSI Fragment Separator operated in achromatic mode with scintillators at intermediate and final foci and 2 ionization chambers. Measured E γ , I γ , $\gamma\gamma$ using the RISING array of 15 Ge cluster detectors. Comparisons with large-scale shell-model calculations.

2007Ho22: ${}^{9}\text{Be}({}^{136}\text{Xe},x\gamma)$ E=120 MeV/nucleon ${}^{136}\text{Xe}$ beam provided by National Superconducting Cyclotron lab (NSCL) at MSU. Fragmentation of ${}^{136}\text{Xe}$ beam followed by separation of fragments by A1900 fragment separator. Time-of-flight measured with a plastic scintillator. Measured E γ , I γ , delayed γ , (fragment) γ correlated events using segmented germanium (SeGA) array. The Ge detectors were gated for 15 μ s by a particle implantation trigger from Si detectors.

128Cd Levels

E(level) ^{†‡}	Jπ @	$T_{1/2}^{\#}$	Comments		
0.0	0+				
645.80 20	(2^{+})				
1430.39 22	(4^{+})				
1870.5 <i>3</i>	(5^{-})	270 ns 7	$T_{1/2}$: time distribution of several γ rays.		
			Dominant $\pi g_{9/2}^{-1} p_{1/2}^{-1}$ configuration.		
2108.3 4	(7^{-})	12 ns 2	$T_{1/2}$: time distribution of 237.9 γ , centroid shift method.		
			Dominant $vd_{3/2}^{-1}h_{11/2}^{-1}$ configuration can possibly be traced to $\pi g_{9/2}vd_{3/2}$ monopole.		
2195.4 4	(6^{+})		3/2 11/2		
2645.9 <i>4</i>	(8^{+})		Dominant $vh_{11/2}^{-2}$ configuration. Dominant $vh_{11/2}^{-2}$ configuration.		
2714.6 <i>4</i>	(10^{+})	$3.56 \mu s 6$	Dominant $vh_{11/2}^{-2}$ configuration.		
		•	$T_{1/2}$: time distribution of 69y, 238y and 538y.		

[†] From least-squares fit to $E\gamma$'s (by evaluators).

[®] 2007Ho22 suggests two alternative level schemes one of which differs significantly (including 5⁻, 7⁻ and 9⁻ levels analogous to (126 Cd) from that of 2009Ca02. However, the placement of γ rays is not based on coincidence data unlike 2009Ca02. Therefore, 2009Ca02 level scheme is adopted.

γ (128Cd)												
E_{γ}	I_{γ}	E_i (level)	\mathtt{J}_{i}^{π}	E_f	\mathbf{J}_f^{π}	Mult.	α^{\dagger}	Comments				
68.7 1	5.2 5	2714.6	(10+)	2645.9	(8+)	E2	5.69	$\alpha(\exp)=6.4\ 9$ $\alpha(K)=3.74\ 6$; $\alpha(L)=1.582\ 25$; $\alpha(M)=0.317\ 5$; $\alpha(N)=0.0519\ 8$; $\alpha(O)=0.000650\ 10$ $\alpha(\exp)$: from $\gamma\gamma$ coincidence data with gate on 238 γ . Mult.: from $\alpha(\exp)$.				
237.9 5	39 2	2108.3	(7^{-})	1870.5	(5^{-})			· 1/				
440.3 <i>3</i>	84 <i>4</i>	1870.5	(5^{-})	1430.39	(4^{+})							
450.4 <i>3</i>	1.8 3	2645.9	(8^{+})	2195.4	(6^{+})							
537.6 2	47 3	2645.9	(8^{+})	2108.3	(7^{-})							
645.8 2	100 5	645.80	(2^{+})	0.0	0_{+}							
765.0 <i>3</i>	1.2 2	2195.4	(6^{+})	1430.39	(4^{+})							
784.6 <i>1</i>	90 5	1430.39	(4^{+})	645.80	(2^{+})							
1224.0 6	11 <i>I</i>	1870.5	(5^{-})	645.80	(2^{+})							

[‡] From 2009Ca02. 2007Ho22 reports fewer gamma transitions but they are similar to the those of 2009Ca02.

[#] From 2009Ca02, time distributions of γ rays.

⁹Be(¹³⁶Xe,Xγ),(²³⁸U,X) **2009Ca02** (continued)

γ (128Cd) (continued)

[†] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

