9 Be(136 Xe,X γ),(238 U,X) **2009Ca02** Type Author Citation Literature Cutoff Date Full Evaluation Zoltan Elekes and Janos Timar NDS 129, 191 (2015) 28-Feb-2015 2009Ca02: E=750 MeV/nucleon 136 Xe beam produced at the SIS accelerator complex at GSI. The reaction 9 Be(238 U,X) with a beam energy of 650 MeV/nucleon was also performed. GSI Fragment Separator operated in achromatic mode with scintillators at intermediate and final foci and 2 ionization chambers. Measured E γ , I γ , $\gamma\gamma$ using the RISING array of 15 Ge cluster detectors. Comparisons with large-scale shell-model calculations. 2007Ho22: ${}^{9}\text{Be}({}^{136}\text{Xe},x\gamma)$ E=120 MeV/nucleon ${}^{136}\text{Xe}$ beam provided by National Superconducting Cyclotron lab (NSCL) at MSU. Fragmentation of ${}^{136}\text{Xe}$ beam followed by separation of fragments by A1900 fragment separator. Time-of-flight measured with a plastic scintillator. Measured E γ , I γ , delayed γ , (fragment) γ correlated events using segmented germanium (SeGA) array. The Ge detectors were gated for 15 μ s by a particle implantation trigger from Si detectors. ## 128Cd Levels | E(level) ^{†‡} | Jπ @ | $T_{1/2}^{\#}$ | Comments | | | |------------------------|------------|----------------|---|--|--| | 0.0 | 0+ | | | | | | 645.80 20 | (2^{+}) | | | | | | 1430.39 22 | (4^{+}) | | | | | | 1870.5 <i>3</i> | (5^{-}) | 270 ns 7 | $T_{1/2}$: time distribution of several γ rays. | | | | | | | Dominant $\pi g_{9/2}^{-1} p_{1/2}^{-1}$ configuration. | | | | 2108.3 4 | (7^{-}) | 12 ns 2 | $T_{1/2}$: time distribution of 237.9 γ , centroid shift method. | | | | | | | Dominant $vd_{3/2}^{-1}h_{11/2}^{-1}$ configuration can possibly be traced to $\pi g_{9/2}vd_{3/2}$ monopole. | | | | 2195.4 4 | (6^{+}) | | 3/2 11/2 | | | | 2645.9 <i>4</i> | (8^{+}) | | Dominant $vh_{11/2}^{-2}$ configuration.
Dominant $vh_{11/2}^{-2}$ configuration. | | | | 2714.6 <i>4</i> | (10^{+}) | $3.56 \mu s 6$ | Dominant $vh_{11/2}^{-2}$ configuration. | | | | | | • | $T_{1/2}$: time distribution of 69y, 238y and 538y. | | | [†] From least-squares fit to $E\gamma$'s (by evaluators). [®] 2007Ho22 suggests two alternative level schemes one of which differs significantly (including 5⁻, 7⁻ and 9⁻ levels analogous to (126 Cd) from that of 2009Ca02. However, the placement of γ rays is not based on coincidence data unlike 2009Ca02. Therefore, 2009Ca02 level scheme is adopted. | γ (128Cd) | | | | | | | | | | | | | |------------------|--------------|---------------|------------------------|---------|----------------------|-------|--------------------|--|--|--|--|--| | E_{γ} | I_{γ} | E_i (level) | \mathtt{J}_{i}^{π} | E_f | \mathbf{J}_f^{π} | Mult. | α^{\dagger} | Comments | | | | | | 68.7 1 | 5.2 5 | 2714.6 | (10+) | 2645.9 | (8+) | E2 | 5.69 | $\alpha(\exp)=6.4\ 9$
$\alpha(K)=3.74\ 6$; $\alpha(L)=1.582\ 25$; $\alpha(M)=0.317\ 5$;
$\alpha(N)=0.0519\ 8$; $\alpha(O)=0.000650\ 10$
$\alpha(\exp)$: from $\gamma\gamma$ coincidence data with gate on 238 γ .
Mult.: from $\alpha(\exp)$. | | | | | | 237.9 5 | 39 2 | 2108.3 | (7^{-}) | 1870.5 | (5^{-}) | | | · 1/ | | | | | | 440.3 <i>3</i> | 84 <i>4</i> | 1870.5 | (5^{-}) | 1430.39 | (4^{+}) | | | | | | | | | 450.4 <i>3</i> | 1.8 3 | 2645.9 | (8^{+}) | 2195.4 | (6^{+}) | | | | | | | | | 537.6 2 | 47 3 | 2645.9 | (8^{+}) | 2108.3 | (7^{-}) | | | | | | | | | 645.8 2 | 100 5 | 645.80 | (2^{+}) | 0.0 | 0_{+} | | | | | | | | | 765.0 <i>3</i> | 1.2 2 | 2195.4 | (6^{+}) | 1430.39 | (4^{+}) | | | | | | | | | 784.6 <i>1</i> | 90 5 | 1430.39 | (4^{+}) | 645.80 | (2^{+}) | | | | | | | | | 1224.0 6 | 11 <i>I</i> | 1870.5 | (5^{-}) | 645.80 | (2^{+}) | | | | | | | | [‡] From 2009Ca02. 2007Ho22 reports fewer gamma transitions but they are similar to the those of 2009Ca02. [#] From 2009Ca02, time distributions of γ rays. ## ⁹Be(¹³⁶Xe,Xγ),(²³⁸U,X) **2009Ca02** (continued) ## γ (128Cd) (continued) [†] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.