$^{127}\mathbf{Cs}\,\beta^+$ decay 1990Ma46

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	A. Hashizume	NDS 112, 1647 (2011)	1-Oct-2009

¹²⁷Xe Levels

Parent: ¹²⁷Cs: E=0.0; $J^{\pi}=1/2^+$; $T_{1/2}=6.25$ h 10; $Q(\beta^+)=2081$ 6; $\%\beta^+$ decay=100.0

The decay scheme is that proposed by 1990Ma46; see also ¹²⁷Xe IT decay (69.2 s). The 1236, 1410, and 1481 levels proposed by 1976Ge18 have been not adopted in this scheme.

2004He22: ¹¹B(E=52 MeV) on natural Sn, measured σ , no decay data.

1990Ma46: ³²S(E=145 MeV) on ⁹⁸Mo, on-line mass separation; γ , ce, $\gamma\gamma$ coin, (γ)(ce) coin.

1990Ga02: ¹²⁷I(α ,4n) E=60 MeV, chem; γ , $\gamma\gamma$ coin, $\gamma\gamma(\theta)$. 1976Ge18: ¹²⁷I(³He,3n), ¹¹⁶Cd(¹⁴N,3n), ¹¹⁸Sn(¹²C,3n)¹²⁷Ba β^+ decay, chem; γ , $\gamma\gamma$ coin.

1967Sp08: Ce(p,spallation) E=660 MeV, chem; semi γ , magnetic spectrometer β^+ , ce.

Others: γ , $\gamma\gamma$ coin (1972Jh01), β^+ (1975We23).

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	E(level) [†]	$J^{\pi \ddagger}$
0.0	1/2+	36.346 d <i>3</i>	1196.85 4	$1/2^+, 3/2^+$
124.748 20	3/2+		1306.333 24	$3/2^{+}$
297.15 11	9/2-	69.2 s 9	1402.60 3	$(3/2)^+$
321.546 20	3/2+		1534.623 22	$(3/2^+)$
342.22 4	7/2+		1558.25 6	1/2,3/2,5/2+
375.445 25	5/2+		1582.664 23	$1/2^+, 3/2^+$
411.957 22	1/2+		1611.96 8	
419.58 6	5/2-,7/2-,9/2-		1716.55 5	1/2,3/2
509.97 <i>3</i>	$(3/2)^+$		1741.33 8	1/2,3/2
530.33 4	7/2+		1774.91? 20	1/2,3/2
587.053 22	3/2+		1806.46 4	$(1/2^+, 3/2)$
711.60 <i>3</i>	7/2+		1831.00 4	$(1/2^+)$
720.09 3			1894.80 9	$(1/2^+, 3/2)$
878.12 6			1972.36 11	1/2,3/2
931.065 24	$3/2^{+}$		2033.16 7	1/2,3/2
976.07 <i>3</i>	1/2,3/2,5/2+			

[†] From a least-squares fit to E_{γ} 's.

[‡] From Adopted Levels.

ε, β^+ radiations

Total $\varepsilon/\beta^+=27.7$ 17 (1962Fr08).

E(decay)	E(level)	$\mathrm{I}\varepsilon^{\ddagger}$	Log ft	$I(\varepsilon + \beta^+)^{\ddagger}$	Comments
(48 6)	2033.16	0.0063 10	5.78 25	0.0063 10	εK=0.36 18; εL=0.48 13; εM+=0.16 5
(109 6)	1972.36	0.0019 7	7.47 18	0.0019 7	εK=0.752 10; εL=0.191 8; εM+=0.0562 24
(186 6)	1894.80	0.0094 7	7.37 5	0.0094 7	εK=0.8071 22; εL=0.1502 16; εM+=0.0427 6
(250 6)	1831.00	0.0811 25	6.73 <i>3</i>	0.0811 25	εK=0.8223 11; εL=0.1388 8; εM+=0.0389 3
(275 6)	1806.46	0.0815 22	6.82 <i>3</i>	0.0815 22	εK=0.8259 9; εL=0.1360 7; εM+=0.03804 20
(306 6)	1774.91?	0.017 7	7.61 18	0.017 7	εK=0.8296 7; εL=0.1332 5; εM+=0.03713 16
(340 6)	1741.33	0.0063 7	8.14 6	0.0063 7	εK=0.8327 5; εL=0.1309 4; εM+=0.03638 13
(364 6)	1716.55	0.0585 25	7.24 3	0.0585 25	εK=0.8346 5; εL=0.1295 4; εM+=0.03592 11
(469 6)	1611.96	0.0176 10	7.99 <i>3</i>	0.0176 10	εK=0.8401 3; εL=0.12531 19; εM+=0.03457 6
(498 6)	1582.664	0.28 8	6.85 13	0.28 8	εK=0.8412 3; εL=0.12448 17; εM+=0.03431 6

Continued on next page (footnotes at end of table)

127 Cs β^+ decay 1990Ma46 (continued)

ϵ, β^+ radiations (continued)

E(decay)	E(level)	$I\beta^{+\dagger\ddagger}$	I ε^{\ddagger}	Log ft	$I(\varepsilon + \beta^+)^\ddagger$	Comments
(523 6)	1558.25		0.0208 13	8.02 3	0.0208 13	εK=0.8420 2; εL=0.12386 15; εM+=0.03411 5
(546 6)	1534.623		0.51 10	6.67 9	0.51 10	εK=0.8427 2; εL=0.12332 14; εM+=0.03394 5
(678 6)	1402.60		0.1145 25	7.519 15	0.1145 25	εK=0.8457 1; εL=0.12104 9; εM+=0.03321 3
(775 6)	1306.333		0.475 13	7.021 16	0.475 13	εK=0.8473; εL=0.11990 7; εM+=0.03284 2
(884 6)	1196.85		0.325 11	7.305 18	0.325 11	εK=0.8486; εL=0.11891 5; εM+=0.03253 2
(1150 6)	931.065		1.16 4	6.988 18	1.16 4	εK=0.8506; εL=0.11733 3; εM+=0.032021 9
(1203 6)	878.12		0.026 5	8.68 9	0.026 5	εK=0.8509; εL=0.11709 3; εM+=0.031946 9
(1361 6)	720.09	4.0×10 ⁻⁵ 16	0.026 10	8.79 17	0.026 10	av E β =161.5 27; ε K=0.8504; ε L=0.11635 4; ε M+=0.03172 1
(1494 6)	587.053	0.056 3	9.53 18	6.306 12	9.59 18	av Eβ=219.9 27; εK=0.8472 3; εL=0.11546 5; εM+=0.03146 2
(1551 6)	530.33	$7. \times 10^{-5} 3$	0.008 3	9.42 17	0.008 3	av $E\beta$ =244.7 27; ε K=0.8447 4; ε L=0.11495 6; ε M+=0.03131 2
(1571 6)	509.97	0.00034 7	0.032 7	8.83 10	0.032 7	av $E\beta$ =253.5 27; ε K=0.8435 4; ε L=0.11473 7; ε M+=0.03125 2
(1661 6)	419.58	0.00050 6	0.027 3	8.96 5	0.027 3	av $E_{\theta}^{2}=292.9\ 27;\ \varepsilon K=0.8370\ 6;\ \varepsilon L=0.11361\ 9;$ $\varepsilon M=0.03093\ 3$
(1669 6)	411.957	1.31 5	66.8 11	5.558 11	68.1 <i>11</i>	av $E\beta$ =296.3 27; ε K=0.8363 6; ε L=0.11350 9; ε M+=0.03090 3
(1706 6)	375.445	0.0035 7	0.15 3	8.24 9	0.15 3	av Eβ=312.2 27; εK=0.8328 7; εL=0.1129 1; εM+=0.03075 3
(1759 6)	321.546	0.023 1	0.72 3	7.574 20	0.74 3	av Eβ=335.7 27; εK=0.8268 8; εL=0.11200 12; εM+=0.03049 4
(1956 6)	124.748	0.40 2	5.4 3	6.791 24	5.8 <i>3</i>	av Eβ=421.8 27; εK=0.7951 12; εL=0.10734 18; εM+=0.02920 5
						E(decay): $E(\beta^+) \approx 910 (1967 \text{Sp08})$. $I\beta^+$: others: 0.47% (1975 We23)) $\approx 0.4\% (1967 \text{Sp08})$.
(2081 6)	0.0	1.25 15	11.1 13	6.53 6	12.3 15	av E β =476.7 27; ε K=0.7670 15; ε L=0.10336 21; ε M+=0.02812 6
						$I(\varepsilon + \beta^+)$: from $I\beta(1063\beta)$ and ε/β^+ theory.
						E(decay): E(β^+)=1040 20 (1975We23), 1068 20

(1967Sp08), 1063 10 (1954Ma54).

[†] From (I β^+ to the ground state) /(I β^+ to the 411.965 state)=1 (1967Sp08,1975We23). [‡] Absolute intensity per 100 decays.

 $\gamma(^{127}{\rm Xe})$

I γ normalization: I(ε + β^+ to g.s.)=12.4% 5 is deduced from I(β^+ to g.s.)/I(β^+ to 411.957 level)=1 (1967Sp08) and I ε /I β^+ . I(ε + β^+ to 297 level)=0 is also assumed (evaluators).

 α (K)exp from 1990Ma46, unless otherwise noted. Values are normalized to α (K)exp(124.7 γ , M1+1%E2)=0.380.

$E_{\gamma}^{\dagger\ddagger}$	$I_{\gamma}^{@i}$	E_i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [#]	δ	α &	Comments
77.36 5	0.030 3	419.58	5/2-,7/2-,9/2-	342.22	7/2+	E1		0.432	α (K)=0.369 6; α (L)=0.0503 8; α (M)=0.01015 15; α (N+)=0.00230 4 α (N)=0.00206 3; α (O)=0.000240 4
90.7 <i>1</i>	0.32 1	411.957	1/2+	321.546	3/2+	M1+E2	0.00 2	1.084	$\begin{array}{l} \alpha(\text{K}) \exp[=0.78 \ 11 \\ \alpha(\text{K}) = 0.930 \ 14; \ \alpha(\text{L}) = 0.1230 \ 18; \ \alpha(\text{M}) = 0.0250 \ 4; \\ \alpha(\text{N}+) = 0.00582 \ 9 \\ \alpha(\text{N}) = 0.00517 \ 8; \ \alpha(\text{O}) = 0.000645 \ 10 \\ \delta: \ \text{from } (90.7\gamma)(321.5\gamma)(\theta) \ (1990\text{Ga02}). \end{array}$
124.70 5	18.1 2	124.748	3/2+	0.0	1/2+	M1+E2	+0.12 2	0.445	α(K)exp=0.38 5; K/L=6.7 13 α(K)=0.381 6; α(L)=0.0516 10; α(M)=0.01051 21; α(N+)=0.00244 5 α(N)=0.00217 5; α(O)=0.000269 5 K:L:M=0.38 5:0.057 8:0.0078 12. Mult.: from α(K)exp. δ: from ¹²⁷ Xe IT decay (1967Ge15).
172.4 ^b 1	0.03 ^d 2	297.15	9/2-	124.748	3/2+	E3		1.627	$\alpha(K)=0.912 \ 13; \ \alpha(L)=0.564 \ 8; \ \alpha(M)=0.1238 \ 18; \ \alpha(N+)=0.0269 \ 4 \ \alpha(N)=0.0245 \ 4; \ \alpha(O)=0.00243 \ 4 \ Additional information \ 1.$
175.11 ^a 5	0.186 3	587.053	3/2+	411.957	1/2+	M1,E2		0.21 5	α (K)=0.172 25; α (L)=0.032 13; α (M)=0.007 3; α (N+)=0.0015 6 α (N)=0.0014 6; α (O)=0.00015 6 α (K)exp=0.36 6 for an unresolved transition
188.4 ^b 1 196.73 5	<i>d</i> 0.604 <i>8</i>	509.97 321.546	(3/2) ⁺ 3/2 ⁺	321.546 124.748	3/2 ⁺ 3/2 ⁺	M1+E2	-0.005 15	0.1250	α (K)exp=0.100 <i>10</i> ; K/L=9.1 <i>19</i> α (K)=0.1075 <i>15</i> ; α (L)=0.01399 <i>20</i> ; α (M)=0.00284 <i>4</i> ; α (N+)=0.000661 <i>10</i> α (N)=0.000588 <i>9</i> ; α (O)=7.35×10 ⁻⁵ <i>11</i> δ : from (196.7 γ)(124.7 γ)(θ) (1990Ga02).
201.6 <i>I</i> 211.57 <i>5</i>	0.014 ^{<i>c</i>} 4 0.130 5	711.60 587.053	7/2 ⁺ 3/2 ⁺	509.97 375.445	(3/2) ⁺ 5/2 ⁺	M1		0.1027	α (K)exp=0.073 <i>13</i> α (K)=0.0884 <i>13</i> ; α (L)=0.01148 <i>16</i> ; α (M)=0.00233 <i>4</i> ; α (N+)=0.000543 <i>8</i> α (N)=0.000482 7: α (Q)=6.03×10 ⁻⁵ 9
217.48 5	0.066 5	342.22	7/2+	124.748	3/2+	E2		0.1210	$\alpha(K)=0.006102$ /, $\alpha(G)=0.05710$ / β $\alpha(K)=0.0967$ 19 $\alpha(K)=0.0967$ 14; $\alpha(L)=0.0194$ 3; $\alpha(M)=0.00404$ 6;

l					¹²⁷	$Cs \beta^+$ decay	1990Ma4	6 (continued)	
$E_{\gamma}^{\dagger\ddagger}$	$I_{\gamma}^{@i}$	E _i (level)	J_i^{π}	E_f	J_f^π	Mult. [#]	δ	α ^{&}	Comments
250.71 <i>5</i> 265.51 <i>5</i>	0.06 2 0.207 <i>3</i>	375.445 587.053	5/2 ⁺ 3/2 ⁺	124.748 321.546	3/2 ⁺ 3/2 ⁺	M1+E2	+1.1 3	0.0594 <i>13</i>	α (N+)=0.000904 <i>13</i> α (N)=0.000813 <i>12</i> ; α (O)=9.03×10 ⁻⁵ <i>13</i> α (K)exp=0.045 <i>10</i> α (K)=0.0496 <i>8</i> ; α (L)=0.0078 <i>5</i> ; α (M)=0.00161 <i>11</i> ; α (N+)=0.000367 <i>22</i> α (N)=0.000329 <i>20</i> ; α (O)=3.87×10 ⁻⁵ <i>18</i>
287.16 5	6.09 7	411.957	1/2+	124.748	3/2+	M1+E2	+0.55 30	0.0462 8	δ: from (265.5γ)(321.5γ)(θ) (1990Ga02). α(K)exp=0.045 6; K/L=6.8 13 α(K)=0.0394 6; α(L)=0.0055 4; α(M)=0.00112 8; α(N+)=0.000258 16 α(N)=0.000230 15; α(O)=2.81×10-5 13 Other: α(K)exp=0.036 13, K/L=6.1 (1967Sp08). δ: from (287.1γ)(124.7γ)(θ) (1990Ga02).
308.07 <i>5</i> 321.54 <i>5</i>	0.019 <i>3</i> 2.08 <i>2</i>	720.09 321.546	3/2+	411.957 0.0	1/2 ⁺ 1/2 ⁺	M1+E2	-0.90 4	0.0338	α (K)exp=0.036 5; K/L=13 3 α (K)=0.0286 4; α (L)=0.00414 7; α (M)=0.000848 13; α (N+)=0.000195 3 α (N)=0.000174 3; α (O)=2.10×10 ⁻⁵ 3 δ ; from 19831r02 in (α nv)
330.27 5 336.1 <i>I</i> 343.98 5 369.41 5	0.011 <i>1</i> 0.017 <i>2</i> 0.091 <i>3</i> 0.014 <i>2</i>	1306.333 711.60 931.065 711.60	3/2+ 7/2+ 3/2+ 7/2+	976.07 375.445 587.053 342 22	1/2,3/2,5/2 ⁺ 5/2 ⁺ 3/2 ⁺ 7/2 ⁺				0. from 1909fro2 in (d,iry).
375.35 5	0.721 9	375.445	5/2 ⁺	0.0	1/2+	(E2)		0.0207	α (K)exp=0.019 3 α (K)=0.01732 25; α (L)=0.00273 4; α (M)=0.000561 8; α (N+)=0.0001278 18 (N) = 0.0001144 4 (α (Q) = 1.241 + 10^{-5} 40
385.20 5	0.148 3	509.97	(3/2)+	124.748	3/2+	M1,E2		0.0203 12	$\begin{aligned} &\alpha(N) = 0.0001144 \ \ Io; \ \alpha(O) = 1.341 \times 10^{-5} \ \ I9 \\ &\alpha(K) = 0.0173 \ \ I3; \ \alpha(L) = 0.00243 \ \ 9; \ \alpha(M) = 0.000496 \ \ 21; \\ &\alpha(N) = 0.000114 \ \ 4 \\ &\alpha(N) = 0.000102 \ \ 4; \ \alpha(O) = 1.236 \times 10^{-5} \ \ 18 \end{aligned}$
x388.71 5 390.05 5 x400.20 5 x401.90 5	$\begin{array}{c} 0.018 \ 2 \\ 0.084 \ 2 \\ 0.021 \ 6 \\ 0.050 \ 6 \end{array}$	711.60	7/2+	321.546	3/2+				
405.68 <i>5</i> 411.95 <i>5</i>	0.025 <i>4</i> 100	530.33 411.957	7/2 ⁺ 1/2 ⁺	124.748 0.0	3/2+ 1/2+	(M1)		0.0181	$\begin{aligned} &\alpha(\text{K})\text{exp}=0.016 \ 2; \ \text{K/L}=7.0 \ 13 \\ &\alpha(\text{K})=0.01559 \ 22; \ \alpha(\text{L})=0.00198 \ 3; \ \alpha(\text{M})=0.000401 \ 6; \\ &\alpha(\text{N}+)=9.36\times10^{-5} \ 14 \\ &\alpha(\text{N})=8.31\times10^{-5} \ 12; \ \alpha(\text{O})=1.043\times10^{-5} \ 15 \\ &\text{K:L:M}=16 \ 2:2.3 \ 3:0.9 \ 1. \ \text{Other:} \ \alpha(\text{K})\text{exp}=0.014 \ 6 \\ &(1967\text{Sp08}). \end{aligned}$
421.00 5	0.021 3	931.065	3/2+	509.97	$(3/2)^+$				

4

From ENSDF

 $^{127}_{54} Xe_{73}$ -4

					127 Cs β^+ c	lecay <mark>1990</mark>	Ma46 (co	ntinued)	
						$\gamma(^{127}\text{Xe})$ (cor	ntinued)		
$E_{\gamma}^{\dagger\ddagger}$	$I_{\gamma}^{\textcircled{0}{i}}$	E _i (level)	J_i^π	E_f	J_f^π	Mult. [#]	δ	α &	Comments
^x 427.00 5 ^x 439.53 5 ^x 458.5 1 462.31 5	0.013 <i>3</i> 0.016 <i>1</i> 0.006 <i>1</i> 8.08 <i>8</i>	587.053	3/2+	124.748	3/2+	M1+E2	+0.6 4	0.0129 6	α (K)exp=0.0091 <i>13</i> ; K/L=6.5 <i>13</i> α (K)=0.0111 <i>6</i> ; α (L)=0.00146 <i>3</i> ; α (M)=0.000296 <i>6</i> ; α (N+)=6.87×10 ⁻⁵ <i>14</i> α (N)=6.11×10 ⁻⁵ <i>12</i> ; α (O)=7.58×10 ⁻⁶ <i>22</i> K:L:M=9.1 <i>13</i> :1.4 <i>2</i> :0.55 <i>8</i> . Others: α (K)exp 0.0124 <i>50</i> , K/L=6.3 (1967Sp08). δ : from (462.3 γ)(124.5 γ)(θ) (1990Ga02).
x480.3 <i>I</i> 519.13 5 x526.2 <i>I</i> x534.6 <i>I</i> x545.5 <i>I</i> x548.0 <i>I</i>	0.006 <i>I</i> 0.075 <i>2</i> 0.005 <i>3</i> 0.007 <i>2</i> 0.007 <i>I</i> 0.005 <i>I</i>	931.065	3/2+	411.957	1/2+				
555.7 1	0.25 4	931.065	3/2+	375.445	5/2+	e			
556.57 5	0.042 7	878.12	= /ot	321.546	$3/2^+$	e			
586./ I 587.01.5	$0.03 \sim 4$	/11.60	7/2* 3/2+	124.748	$\frac{3}{2^+}$ $\frac{1}{2^+}$	8 M1(+F2) ⁸	<0.9	0.0071.4	$\alpha = 0.0071 4$; $\alpha(K) = 0.0062 4$; $\alpha(L) = 0.00079 3$;
507.01 5	0.7 1	567.055	5/2	0.0	1/2	WII(+L2)-	<0.9	0.0071 4	$\alpha(M)=0.000160 \ 6; \ \alpha(N+)=3.71\times10^{-5} \ 15 \ \alpha(N)=3.30\times10^{-5} \ 13; \ \alpha(O)=4.12\times10^{-6} \ 19$
588.8 <i>1</i>		931.065	3/2+	342.22	7/2+				
594.8 <i>1</i>	0.01 1	1306.333	3/2+	711.60	7/2+				
595.3 1	0.08 1	720.09		124.748	3/2+				
603.57 5	0.026 I	1534.623	$(3/2^{+})$	931.065	$3/2^+$				
coo ch 1	0.0171	021.005	$1/2^{+}, 5/2^{+}$	970.07	1/2,5/2,5/2				
609.0° I	0.00^{d} I	951.005	$3/2^{+}$	521.540	3/2*				
$^{x}609.9^{o} 1$ $^{x}634.4 1$ $^{x}646.60 5$	0.04^{a} 1 0.009 5 0.017 2	1196.85	1/2+,3/2+	587.053	3/21				
654.51 5 x658.6 1 x659.32 5 x678.84 5	0.022 <i>1</i> 0.005 <i>1</i> 0.010 <i>1</i> 0.020 <i>1</i>	976.07	1/2,3/2,5/2+	321.546	3/2+				
691.1 <i>1</i>	0.004 1	1402.60	$(3/2)^+$	711.60	7/2+				
719.2 <i>1</i>	0.05 1	1306.333	3/2+	587.053	3/2+	f			
720.2 <i>1</i> *727.07 <i>5</i> *731.07 <i>5</i> *736.9 <i>1</i> *766.0 <i>1</i>	0.03 <i>I</i> 0.019 <i>I</i> 0.023 <i>I</i> 0.005 <i>I</i> 0.004 <i>I</i>	720.09		0.0	1/2+	f			

 $^{127}_{54}$ Xe₇₃-5

L

From ENSDF

¹²⁷₅₄Xe₇₃-5

					127 Cs β^+ dec	cay 1990	Ma46 (con	tinued)	
					$\frac{\gamma}{\gamma}$	(¹²⁷ Xe) (co	ntinued)		
$E_{\gamma}^{\dagger\ddagger}$	Ι _γ @ <i>i</i>	E _i (level)	\mathbf{J}_i^{π}	E_f	${ m J}_f^\pi$	Mult. [#]	δ	α &	Comments
^x 768.1 <i>1</i> 776.07 <i>5</i> 785.4 <i>1</i> ^x 794 7 <i>1</i>	0.006 <i>1</i> 0.012 <i>1</i> 0.007 <i>1</i> 0.008 <i>1</i>	1306.333 1716.55	3/2 ⁺ 1/2,3/2	530.33 931.065	7/2 ⁺ 3/2 ⁺				
796.5 <i>1</i> 806.34 <i>5</i>	0.006 <i>I</i> 0.723 <i>8</i>	1306.333 931.065	3/2+ 3/2+	509.97 124.748	(3/2) ⁺ 3/2 ⁺	M1+E2	+0.14 3	0.00351 5	$\alpha(K)\exp=0.0031 5$ $\alpha=0.00351 5; \alpha(K)=0.00303 5; \alpha(L)=0.000378 6;$ $\alpha(M)=7.63\times10^{-5} 11; \alpha(N+)=1.78\times10^{-5} 3$ $\alpha(N)=1.581\times10^{-5} 23; \alpha(O)=1.99\times10^{-6} 3$
814.58 <i>5</i> ^x 816.2 <i>1</i> ^x 821 0 <i>1</i>	0.042 <i>3</i> 0.005 <i>3</i> 0.015 <i>2</i>	1534.623	(3/2 ⁺)	720.09					δ: $-8.7 + 19 - 34$ from $\gamma\gamma(\theta)$ (1990Ga02).
822.98 5	0.228 4	1534.623	(3/2 ⁺)	711.60	7/2+	(E2)		0.00251 4	α (K)exp=0.0031 7 α =0.00251 4; α (K)=0.00216 3; α (L)=0.000284 4; α (M)=5.76×10 ⁻⁵ 8; α (N+)=1.334×10 ⁻⁵ 19 α (N)=1.188×10 ⁻⁵ 17; α (Q)=1.463×10 ⁻⁶ 21
830.3 <i>1</i> *835.4 <i>1</i> *860.4 <i>1</i>	0.008 <i>1</i> 0.004 <i>1</i> 0.007 <i>1</i>	1806.46	(1/2+,3/2)	976.07	1/2,3/2,5/2+				<i>a</i> (1)-1.165×10 17, <i>a</i> (0)-1.405×10 21
862.56 <i>5</i> 875.26 <i>5</i> 894.31 <i>5</i> *920.4 <i>1</i> *923.9 <i>1</i>	0.012 <i>I</i> 0.068 <i>2</i> 0.030 <i>I</i> 0.003 <i>I</i> 0.012 <i>I</i>	1582.664 1196.85 1306.333	1/2 ⁺ ,3/2 ⁺ 1/2 ⁺ ,3/2 ⁺ 3/2 ⁺	720.09 321.546 411.957	3/2 ⁺ 1/2 ⁺				
930.8 <i>1</i> 931.10 ^{<i>a</i>} 5	0.030 ^c 7 0.66 1	1306.333 931.065	3/2 ⁺ 3/2 ⁺	375.445 0.0	5/2 ⁺ 1/2 ⁺	<i>h</i> М1+Е2	<0.5	0.00246 8	α =0.00246 8; α (K)=0.00213 7; α (L)=0.000264 7; α (M)=5.34×10 ⁻⁵ 14; α (N+)=1.25×10 ⁻⁵ 4 α (N)=1.11×10 ⁻⁵ 3; α (O)=1.39×10 ⁻⁶ 4
947.6 <i>1</i> *964.69 <i>5</i>	0.008 <i>1</i> 0.028 <i>1</i>	1534.623	(3/2 ⁺)	587.053	3/2+				1990Ma46 tentatively assign this as transition from 1306 339 to 342 29
976.3 <i>1</i> 984.78 <i>5</i> 990.64 <i>5</i> 995.54 <i>5</i> 1004.4 <i>1</i> 1024.64 <i>5</i>	0.003 <i>I</i> 0.119 <i>2</i> 0.060 <i>I</i> 0.059 <i>I</i> 0.0003 <i>I</i> 0.027 <i>I</i> 0.003 <i>J</i>	976.07 1306.333 1402.60 1582.664 1534.623 1534.623	$1/2,3/2,5/2^+$ $3/2^+$ $(3/2)^+$ $1/2^+,3/2^+$ $(3/2^+)$ $(3/2^+)$	0.0 321.546 411.957 587.053 530.33 509.97	$1/2^+$ $3/2^+$ $1/2^+$ $3/2^+$ $7/2^+$ $(3/2)^+$				1500.557 (0 572.27.
1070.0 <i>I</i> 1072.0 <i>I</i> 1073.0 <i>I</i> 1081.05 <i>5</i> 1086.3 <i>I</i>	0.003 <i>I</i> 0.04 ^{<i>c</i>} <i>I</i> 0.025 ^{<i>c</i>} <i>9</i> 0.032 <i>I</i> 0.009 <i>I</i>	1196.85 1582.664 1402.60 1806.46	$1/2^+, 3/2^+$ $1/2^+, 3/2^+$ $(3/2)^+$ $(1/2^+, 3/2)$	124.748 509.97 321.546 720.09	3/2 ⁺ (3/2) ⁺ 3/2 ⁺				

¹²⁷₅₄Xe₇₃-6

L

From ENSDF

¹²⁷₅₄Xe₇₃-6

					¹²⁷ C	$Cs \beta^+$ decay	y 1990Ma4	6 (continued)		
$\gamma(^{127}\text{Xe})$ (continued)										
$E_{\gamma}^{\dagger\ddagger}$	$I_{\gamma}^{@i}$	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. [#]	α &	Comments		
1110.86 5	0.024 1	1831.00	$(1/2^+)$	720.09						
[~] 1120.14 5 1129.7 <i>1</i>	0.0371 0.0071	1716.55	1/2,3/2	587.053	3/2+					
1146.2 <i>1</i>	0.004 1	1558.25	1/2,3/2,5/2+	411.957	$1/2^{+}$					
*1154.6 <i>I</i> 1159.18.5	0.008 I 0.071 I	1534.623	$(3/2^+)$	375.445	$5/2^{+}$					
1170.73 5	0.092 2	1582.664	$1/2^+, 3/2^+$	411.957	$1/2^+$					
^x 1178.5 <i>1</i> 1181 57 5	0.002 1	1306 333	3/2+	124 748	3/2+	M1 F2	0.00131.17	$\alpha(K) \exp{-0.00098}$ 26		
1101.57 5	0.170 2	1500.555	5/2	124.740	5/2	1111,122	0.00151 17	α = 0.00131 <i>17</i> ; α (K)=0.00113 <i>15</i> ; α (L)=0.000140 <i>17</i> ; α (M)=2.8×10 ⁻⁵		
								4; $\alpha(N+)=1.09\times10^{-5}$ 7		
1100 21 1	0.015 1	1774 019	1/2 2/2	597 052	2/2+			$\alpha(N)=5.9\times10^{-6}$ 7; $\alpha(O)=7.3\times10^{-7}$ 9; $\alpha(IPF)=4.37\times10^{-6}$ 18		
1188.35 1 1192.38 5	0.015 1 0.019 1	1774.917 1534.623	$(3/2^+)$	342.22	$\frac{3}{2^+}$ $\frac{7}{2^+}$					
1196.87 5	0.368 4	1196.85	1/2+,3/2+	0.0	$1/2^{+}$	M1,E2	0.00127 16	α(K)exp=0.0013 2; K/L=6.5 28		
								$\alpha = 0.00127 \ I6; \ \alpha(\text{K}) = 0.00110 \ I4; \ \alpha(\text{L}) = 0.000136 \ I6; \ \alpha(\text{M}) = 2.7 \times 10^{-5}$		
								$\alpha(N)=5.7\times10^{-6}$ 7; $\alpha(O)=7.1\times10^{-7}$ 9; $\alpha(IPF)=5.93\times10^{-6}$ 24		
1207.1 1	0.006 1	1582.664	$1/2^+, 3/2^+$	375.445	$5/2^+$					
1213.08 5 1219.3 <i>I</i>	0.074 2	1534.623	$(3/2^+)$ $(1/2^+, 3/2)$	321.546 587.053	$\frac{3}{2^+}$ $\frac{3}{2^+}$			$\alpha(K) \exp = 0.0015 \ S$		
1236.5 1	0.017 1	1558.25	$1/2, 3/2, 5/2^+$	321.546	$3/2^+$					
1261.09 5	0.147 2	1582.664	$1/2^+, 3/2^+$	321.546	3/2+	M1,E2	0.00115 14	$\alpha(K) \exp = 0.0014 \ 3$		
								$a = 0.00115 14, a(R) = 0.00098 12, a(L) = 0.000121 14, a(M) = 2.4×10^{-3}$ 3: $a(R+)=2.04\times10^{-5} 4$		
								$\alpha(N)=5.1\times10^{-6} 6; \alpha(O)=6.4\times10^{-7} 8; \alpha(IPF)=1.47\times10^{-5} 6$		
1290.3 <i>1</i>	0.021 1	1611.96	$(1/2^+ 3/2)$	321.546	$3/2^+$					
1306.31 5	0.316 5	1306.333	(1/2, 3/2) $3/2^+$	0.0	(3/2) $1/2^+$	M1,E2	0.00107 13	α(K)exp=0.00080 14		
								α =0.00107 13; α (K)=0.00091 11; α (L)=0.000112 13; α (M)=2.27×10 ⁻⁵		
								25; α (N+)=2.79×10 ⁻⁵ 4 α (N)=4.7×10 ⁻⁶ 6; α (O)=5.0×10 ⁻⁷ 7; α (IDE)=2.26×10 ⁻⁵ 8		
1321.4 <i>I</i>	0.004 1	2033.16	1/2,3/2	711.60	7/2+			$u(1) - 4.7 \times 10^{-0}$, $u(0) = 3.9 \times 10^{-7}$, $u(1) = 2.20 \times 10^{-7}$		
1341.2 <i>I</i>	0.014 1	1716.55	1/2,3/2	375.445	5/2+					
^x 1362.1 <i>I</i> ^x 1363.5 <i>I</i>	0.004 3							1990Ma46 tentatively assign this as the transition from 1774.87 to		
								411.945.		
1365.8 <i>1</i> 1385 3 <i>1</i>	0.008 1	1741.33	1/2,3/2	375.445	$5/2^+$ $3/2^+$					
1394.7 1	0.025 3	1716.55	1/2,3/2	321.546	$3/2^+$					
x1396.1 1	0.005 3	1402 (0	$(2/2)^{+}$	0.0	1/0+					
1402.56 3	0.086 2	1402.60	$(3/2)^{+}$	0.0	1/2'					

7

$\frac{127}{3}$ Cs β^+ de							1990Ma4	6 (continued)
						$\gamma(^{127}$	Xe) (continue	ed)
$E_{\gamma}^{\dagger\ddagger}$	$I_{\gamma}^{@i}$	E _i (level)	\mathbf{J}_i^{π}	E_{f}	\mathbf{J}_{f}^{π}	Mult. [#]	a&	Comments
1409.81 5 1419.12 5 1431.1 <i>I</i> 1433.7 <i>I</i> *1438.4 <i>I</i>	0.180 <i>3</i> 0.085 <i>3</i> 0.006 <i>1</i> 0.003 <i>1</i> 0.0006 <i>5</i>	1534.623 1831.00 1806.46 1558.25	$(3/2^+) (1/2^+) (1/2^+, 3/2) 1/2, 3/2, 5/2^+$	124.748 411.957 375.445 124.748	3/2 ⁺ 1/2 ⁺ 5/2 ⁺ 3/2 ⁺			
1446.1 <i>I</i> <i>x</i> 1452.7 <i>I</i>	0.004 <i>1</i> 0.038 <i>5</i>	2033.16	1/2,3/2	587.053	3/2+			1990Ma46 tentatively assign this as the transition from 1774.87 to 321.564.
1455.2 ^{<i>j</i>} <i>1</i> 1457.86 <i>5</i> 1484.98 <i>5</i> 1487.3 <i>1</i> 1509 3 <i>1</i>	0.008 <i>4</i> 0.018 <i>1</i> 0.042 <i>1</i> 0.007 <i>1</i> 0.015 <i>1</i>	1831.00 1582.664 1806.46 1611.96 1831.00	$(1/2^+)$ $1/2^+, 3/2^+$ $(1/2^+, 3/2)$ $(1/2^+)$	375.445 124.748 321.546 124.748 321.546	5/2+ 3/2+ 3/2+ 3/2+ 3/2+			
1509.5 <i>1</i> 1519.2 <i>1</i> 1534.62 <i>5</i>	0.013 <i>I</i> 0.012 <i>I</i> 0.134 2	1831.00 1894.80 1534.623	$(1/2^{+})$ $(1/2^{+},3/2)$ $(3/2^{+})$	375.445 0.0	5/2 5/2 ⁺ 1/2 ⁺	(M1,E2)	0.00084 8	α (K)exp=0.00053 <i>10</i> α =0.00084 <i>8</i> ; α (K)=0.00065 <i>7</i> ; α (L)=8.0×10 ⁻⁵ <i>8</i> ; α (M)=1.61×10 ⁻⁵ <i>16</i> ; α (N+)=9.41×10 ⁻⁵ <i>17</i> α (N)=3 3×10 ⁻⁶ <i>4</i> : α (O)=4 2×10 ⁻⁷ 5: α (IPF)=9.03×10 ⁻⁵ <i>19</i>
1558.3 <i>1</i> 1582.66 <i>5</i>	0.009 <i>1</i> 0.069 <i>1</i>	1558.25 1582.664	1/2,3/2,5/2 ⁺ 1/2 ⁺ ,3/2 ⁺	0.0 0.0	1/2+ 1/2+	M1,E2	0.00081 7	$\begin{aligned} &\alpha(K) \exp[=0.00059 \ 14 \\ &\alpha=0.00081 \ 7; \ \alpha(K)=0.00061 \ 6; \ \alpha(L)=7.5\times10^{-5} \ 7; \ \alpha(M)=1.50\times10^{-5} \ 15; \\ &\alpha(N+)=0.0001121 \ 19 \\ &\alpha(N)=3.1\times10^{-6} \ 3; \ \alpha(O)=3.9\times10^{-7} \ 4; \ \alpha(IPF)=0.0001086 \ 20 \end{aligned}$
1592.3 ^{<i>j</i>} 1 1649.6 ^{<i>j</i>} 1 1681.68 5 1716.6 1 1741.4 1 1770.4 2 1774.9 2 1806.5 2 1831.0 2 1895.0 2 1909.0 2	0.020 <i>I</i> 0.017 <i>I</i> 0.035 <i>I</i> 0.040 <i>I</i> 0.0020 <i>3</i> 0.027 <i>I</i> 0.0045 <i>4</i> 0.0009 <i>3</i> 0.0020 <i>3</i>	1716.55 1774.91? 1806.46 1716.55 1741.33 1894.80 1774.91? 1806.46 1831.00 1894.80 2033.16	$1/2,3/2$ $1/2,3/2$ $(1/2^+,3/2)$ $1/2,3/2$ $1/2,3/2$ $(1/2^+,3/2)$ $1/2,3/2$ $(1/2^+,3/2)$ $(1/2^+)$ $(1/2^+,3/2)$ $1/2,3/2$ $1/2,3/2$	$124.748 \\ 124.748 \\ 124.748 \\ 0.0 \\ 0.0 \\ 124.748 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 124.748 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 124.748 \\ 0.0 $	$3/2^+$ $3/2^+$ $3/2^+$ $1/2^+$ 1			

[†] From 1990Ma46.

 ∞

[‡] Except assigned γ 's in ¹²⁷Cs β decay by 1990Ma46, the authors report following unassigned E_{γ} 's from $\gamma\gamma$ coincidence: (100), 104, 141, (147), (161), (167), (168), 181, 207, (214), 220, 228, 230, 235, (241), 244, 248, (275), (284), (299), 338, 378, 395, (398), 449, 474, (513), 547, 553, (563), 577, 587, (636), (683), (685), 712, 717, 770, 802, 815, (822), 827, 845, 882, 956, 980, 1056, (1071), 1126, 1229, 1242, 1285 keV. Possible escape peaks are shown in parentheses

 $\gamma(^{127}\text{Xe})$ (continued)

(evaluator).

[#] From $\gamma\gamma(\theta)$ (1990Ga02) and α (K)exp (1990Ma46).

[@] Value relative to $I(411.9\gamma)=100$.

& Theoretical conversion coefficients are calculated using BrIcc code for the multipolarity and mixing ratio indicated.

^{*a*} Unresolved peak in singles spectrum (1990Ma46).

^b Energy difference between relevant levels (1990Ma46), uncertainty is given by the evaluators.

^c From coincidence data.

^d No intensity is given by 1990Ma46.

 $e \alpha(K) \exp = 0.0078 \ 15$ is for $E\gamma = 555.7 + 556.57$.

 $f \alpha(K) \exp = 0.0029 \ 14$ is for $E\gamma = 719.2 + 720.2$.

 g α(K)exp=0.0067 9, K/L=7.4 15 is for Eγ=586.7+587.01. Authors' Eγ=558 in their table 2 is a misprint. Other: 0.0057 25 (1967Sp08). With mult(586.7γ)≠E0, the data lead to mult(587.01γ)=M1(+E2) with δ<0.9.

^h α (K)exp=0.0025 4 is for E γ =930.8+931.10. With mult(930.8 γ) \neq E0, the data lead to mult(931.10 γ)=M1(+E2) with δ <0.5.

^{*i*} For absolute intensity per 100 decays, multiply by 0.629 *10*.

^{*j*} Placement of transition in the level scheme is uncertain.

 $x \gamma$ ray not placed in level scheme.

¹²⁷₅₄Xe₇₃

127 Cs β^+ decay 1990Ma46

