		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	A. Hashizume	NDS 112, 1647 (2011)	1-Oct-2009

Parent: ¹²⁷Sb: E=0.0; $J^{\pi}=7/2^+$; $T_{1/2}=3.85$ d 5; $Q(\beta^-)=1581$ 5; $\%\beta^-$ decay=100.0 1967Ra13: ²³⁵U(n,F), ¹²⁸Te(γ ,p) chem; semi γ , scin-semi $\beta\gamma$ -, $\gamma\gamma$ -coin.

1967Ta05: ¹²⁸Te(γ ,p) chem; semi β , γ , scin $\beta\gamma$ -coin.

1972Kr15: ²³⁵U(n,F) chem; nuclear orientation $\gamma(\theta)$.

1974So03: ²³⁵U(n,F) chem; semi $\gamma\gamma(\theta)$, ce $\gamma(t)$.

1985De04: U(n,F) chem; semi, NaI(Tl), $\gamma\gamma(\theta)$.

The decay scheme is basically that constructed by 1967Ra13 but with the addition of three transitions (456 γ , 624 γ , 1155 γ) as proposed by 1967Ta05. See also ¹²⁷Te IT decay (106.1 d).

¹²⁷Te Levels

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	Comments
0.0	3/2+	9.35 h 7	
61.12 10	$1/2^+$		
87.7 10	$11/2^{-}$	106.1 d 7	
340.1 10	(9/2 ⁻)	0.41 ns 2	$T_{1/2}$: from (ce 445 γ)(252 γ)(t), (ce 445 γ)(ce 252 γ)(t) (1974So03); other: 0.30 ns 8 (1968Is03).
473.24 25	$5/2^{+}$		
502.9 4	$3/2^{+}$		
631.0 9	7/2-		
685.5 <i>5</i>	7/2+		
763.7 8	3/2+		
783.4 <i>3</i>	$5/2^{+}$		
785.2 10	7/2-		
924.3 6	7/2+		
1077.0 5	5/2,7/2,9/2		
1140.9 5	5/2+		
1155.4 7	5/2+		
1290.3 5	5/2+		
1323.4? 8			
1377.9 9	5/2+		

[†] From a least-squares fit to $E(\gamma's)$.

[‡] From Adopted Levels.

 β^{-} radiations

E(decay)	E(level)	$I\beta^{-\ddagger}$	Log ft	Comments
(203 5)	1377.9	0.07 4	7.8 3	av E β =55.8 16
(291 5)	1290.3	0.77 22	7.28 13	av $E\beta = 82.9 \ 16$
(426 5)	1155.4	0.9 <i>3</i>	7.76 15	av E β =127.6 18
(440 5)	1140.9	1.55 20	7.57 6	av E β =132.6 18
(504 5)	1077.0	5.4 4	7.23 4	av E β =155.0 18
(657 5)	924.3	1.3 3	8.24 11	av E β =210.9 19
(796 5)	785.2	4.5 3	8.00 4	av E β =264.2 20
(798 5)	783.4	18.0 11	7.40 3	av E β =265.1 20
				E(decay): 786 5 from β (784 γ) coin (1967Ra13).
890 5	685.5	35.8 20	7.28 <i>3</i>	av E β =303.9 21
				E(decay): from $\beta(686\gamma)$ coin (1967Ra13).
(950 5)	631.0	4.6 6	8.27 6	av E β =325.7 21

Continued on next page (footnotes at end of table)

$^{127}\mathbf{Sb}\,\beta^-$ decay (3.85 d) 1967Ra13,1967Ta05 (continued)

β^- radiations (continued)

E(decay)	E(level)	Ιβ ^{-‡}	Log ft	Comments
1104 5	473.24	23.4 16	7.81 4	av $E\beta = 390.8 \ 21$
1244 5	340.1	1.7 5	9.13 13	E(decay): from $\beta(4/3\gamma)$ coin (196/Ra13). av E β =446.6 22 E(decay): from $\beta(252\gamma)$ coin (1967Ra13)
1493 5	87.7	2.0 [†] 5	10.21 ¹ <i>u</i> 11	av E β =561.9 21 E(decay): from 1967Ra13.

[†] Measured value (1967Ta05).
[‡] Absolute intensity per 100 decays.

				1	27 Sb β^-	decay (3.85	d) 1967Ra13,1	967Ta05 (cor	ntinued)	
							$\gamma(^{127}\text{Te})$			
Iγ normaliz I β (to 88 l	ation: The evel)=2.09	absolute no % 5.	rmalization is	obtained	l by requ	iring total I(₂	y+ce) to 88 level -	+ $I(\gamma + ce)$ to g	g.s. (except	t 88 γ) to be 98.0% 5, since measured
E_{γ}^{\dagger}	Ι _γ ^{<i>c</i>}	E_i (level)	\mathbf{J}_i^π	E_f	\mathbf{J}_{f}^{π}	Mult. [#]	$\delta^{@}$	α^{\ddagger}	$I_{(\gamma+ce)}^{c}$	Comments
61.1 ^{<i>a</i>} <i>I</i>	3.9 3	61.12	1/2+	0.0	3/2+	M1+E2	0.32 +12-17	3.5 5	17.5 15	ce(K)/(γ+ce)=0.60 7; ce(L)/(γ+ce)=0.14 5; ce(M)/(γ+ce)=0.030 12; ce(N)/(γ+ce)=0.0062 25 ce(N)/(γ+ce)=0.0056 23; ce(O)/(γ+ce)=0.00052 18 ce(K)/(I _γ +I _{ce})=0.60 7; ce(L)/(I _γ +I _{ce})=0.14 5; ce(M)/(I _γ +I _{ce})=0.030 12; ce(N+)/(I _γ +I _{ce})=0.0062 25. I _(γ+ce) : from Σ(γ+ce)(to 61). Mult.: from δ, and T _{1/2} expected from γγ-coin experiment in 1967Ra13. δ: from α calculated from ratio of I(γ+ce) to Iγ.
≈153 154.3 5 252.4 3	0.4 2 23.1 9	1077.0 785.2 340.1	5/2,7/2,9/2 7/2 ⁻ (9/2 ⁻)	924.3 631.0 87.7	7/2+ 7/2 ⁻ 11/2 ⁻	D+Q D+Q	-2.1 5			 δ: +0.34 21 or -2.3 +8-20 (1985De04). δ: weighted av of -1.53 24 (1972Kr15), -1.61 39 (1974So03), and -2.55 20 (1985De04). Others: -0.56 10 (1972Kr15), -0.31 3 (1985De04).
280.4 5	1.8 4	783.4	5/2+	502.9	3/2+	(M1+E2)		0.044 4		$\alpha(K) = 0.0375 \ 24; \ \alpha(L) = 0.0055 \ 11; \ \alpha(M) = 0.00111 \ 23; \ \alpha(N+) = 0.00024 \ 5 \ \alpha(N) = 0.00022 \ 5; \ \alpha(O) = 2.2 \times 10^{-5} \ 4 \ 5 \ \alpha(D) = 0.00022 \ 5; \ \alpha(D) = 0.00024 \ 5 \ \alpha(D) = 0.00024 \ \alpha(D) = 0.00024 \ \alpha(D) = 0.00024 \ $
290.8 5	5.5 3	631.0	7/2-	340.1	(9/2 ⁻)	(M1+E2)	+0.40 3	0.0378		α(K)=0.092 of +7.8 12 (193)De04). α(K)=0.0325 5; α(L)=0.00428 8; $ α(M)=0.000857 15; α(N+)=0.000187 3 α(N)=0.000169 3; α(O)=1.81×10^{-5} 3 δ: others: +1.9 5 (1974So03), +0.27 +21-13or 6 +68-3 (1972Kr15). $
293.3 ^b 9	0.8 ^b 4	924.3	7/2+	631.0	7/2-	E1(+M2)	+0.12 13	0.012 7		$\alpha(K)=0.011\ 6;\ \alpha(L)=0.0013\ 9;\ \alpha(M)=0.00027\ 18;\ \alpha(N+)=6.E-5\ 4$ $\alpha(N)=5.E-5\ 4;\ \alpha(\Omega)=6\ E-6\ 4$
310.0 7	0.7 3	783.4	5/2+	473.24	5/2+	(M1+E2)		0.0330 18		$\alpha(K) = 0.0280 \ 10; \ \alpha(L) = 0.0040 \ 6; \alpha(M) = 0.00081 \ 13; \ \alpha(N+) = 0.00017 \ 3 \alpha(N) = 0.000158 \ 24; \ \alpha(O) = 1.63 \times 10^{-5} \ 17 \delta: +0.10 \ 3 \ or -2.1 \ +4-9 \ (1985 De04).$
391.8 5	2.6 2	1077.0	5/2,7/2,9/2	685.5	7/2+	D+Q	+0.15 2	0.01.121		δ: others: 0.55 + 51 - 19 or 2.8 + 25 - 15 (1972Kr15).
412.1 5	10.4 11	473.24	5/2+	61.12	1/2+	[E2]		0.01431		$\alpha(\mathbf{K})=0.01210\ 18;\ \alpha(\mathbf{L})=0.00178\ 3;$

ω

 $^{127}_{52}$ Te₇₅-3

L

¹²⁷ Sb β^- decay (3.85 d) 1967Ra13,1967Ta05 (continued)										
γ ⁽¹²⁷ Te) (continued)										
E_{γ}^{\dagger}	I_{γ}^{c}	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [#]	$\delta^{@}$	α^{\ddagger}	Comments	
441.0 9 445.1 5	1.9 <i>9</i> 11.8 <i>3</i>	502.9 785.2	3/2+ 7/2-	61.12 340.1	1/2 ⁺ (9/2 ⁻)	D+Q D+Q	-1.0 4		α (M)=0.000357 6; α (N+)=7.67×10 ⁻⁵ <i>12</i> α (N)=6.96×10 ⁻⁵ <i>11</i> ; α (O)=7.10×10 ⁻⁶ <i>11</i> δ : +0.5 +4-2 or <-4.0 (1985De04). δ : weighted av of -0.90 <i>15</i> (1972Kr15), -3.14 <i>76</i> (1974So03), and -1.16 <i>30</i> (1985De04).	
451.0 7	0.5 2	924.3	7/2+	473.24	5/2+	(M1+E2)		0.0115 6	$\begin{aligned} &\alpha(\mathbf{K}) = 0.0099 \ 7; \ \alpha(\mathbf{L}) = 0.001321 \ 24; \ \alpha(\mathbf{M}) = 0.000264 \ 6; \\ &\alpha(\mathbf{N}+) = 5.74 \times 10^{-5} \ 9 \\ &\alpha(\mathbf{N}) = 5.19 \times 10^{-5} \ 9; \ \alpha(\mathbf{O}) = 5.50 \times 10^{-6} \ 15 \\ &\delta: \ +0.65 \ 76 \ \text{or} \ +1.16 \ +22 - 63 \ (1985\text{De04}). \end{aligned}$	
456 ^{cca} 1 473.0 4	0.3 2 70.1 <i>19</i>	1140.9 473.24	5/2 ⁺ 5/2 ⁺	685.5 0.0	7/2+ 3/2+	(M1+E2)	-0.10 3	0.01077 16	$\alpha(K)=0.00933 \ 14; \ \alpha(L)=0.001160 \ 17; \ \alpha(M)=0.000231 \ 4; \ \alpha(N+)=5.07\times10^{-5} \ 8 \ \alpha(N)=4.57\times10^{-5} \ 7; \ \alpha(O)=4.99\times10^{-6} \ 7 \ \delta:$ weighted av of -0.10 <i>I</i> (1985De04) and -0.29 <i>6</i> (1972Kr15).	
502.8 ^b 6 543.3 5	2.1 ^b 7 8.0 12	502.9 631.0	3/2 ⁺ 7/2 ⁻	0.0 87.7	3/2 ⁺ 11/2 ⁻	D+Q [E2]		0.00648 10	δ: +0.34 +90-24 or +2.1 +3-9 (1985De04). $ α = 0.00648 \ 10; \ α(K) = 0.00553 \ 8; \ α(L) = 0.000761 \ 11; $ $ α(M) = 0.0001524 \ 22; \ α(N+) = 3.30 \times 10^{-5} \ 5 $ $ α(N) = 2.99 \times 10^{-5} \ 5; \ α(O) = 3.11 \times 10^{-6} \ 5 $	
584.2 ^b 11 603.5 5	0.9 ⁶ 5 12.1 3	924.3 1077.0	7/2 ⁺ 5/2,7/2,9/2	340.1 473.24	(9/2 ⁻) 5/2 ⁺	D+Q			δ: +0.14 8 or -2.3 5 (1985De04), +0.00 7 or +1.65 25 (1972Kr15).	
624 ^{&d} 1 637.8 5	0.18 6 1.2 4	685.5 1140.9	7/2 ⁺ 5/2 ⁺	61.12 502.9	1/2 ⁺ 3/2 ⁺	(M1+E2)		0.0047 5	α =0.0047 5; α (K)=0.0041 5; α (L)=0.00052 4; α (M)=0.000104 8; α (N+)=2.27×10 ⁻⁵ 17 α (N)=2.05×10 ⁻⁵ 15; α (O)=2.20×10 ⁻⁶ 20 β_{1} , α (D)=2.05×10 ⁻⁵ 50 84 (1985)=041	
652.3 9 667.5 9	1.0 2 2.0 2	1155.4 1140.9	5/2 ⁺ 5/2 ⁺	502.9 473.24	3/2 ⁺ 5/2 ⁺	D+Q			δ : +0.24 7 or +2.1 4 (1985De04).	
682.3 ⁶ 10 685.7 5	1.5 ⁰ 7 100	1155.4 685.5	5/2 ⁺ 7/2 ⁺	473.24 0.0	5/2+ 3/2+					
698.5 ^d 5 722.2 5 ^x 745.9 5	9.9 2 5.1 <i>3</i> 0.4 2	785.2 783.4	7/2 ⁻ 5/2 ⁺	87.7 61.12	11/2 ⁻ 1/2 ⁺					
763.7 8 783.7 5	0.2 <i>I</i> 41.1 9	763.7 783.4	3/2+ 5/2+	0.0 0.0	3/2+ 3/2+	(M1+E2)		0.0029 4	α =0.0029 4; α (K)=0.0025 3; α (L)=0.00031 3; α (M)=6.2×10 ⁻⁵ 6; α (N+)=1.36×10 ⁻⁵ 14 α (N)=1.22×10 ⁻⁵ 12; α (O)=1.32×10 ⁻⁶ 15 δ : +0.21 1 or -11.7 9 (1972Kr15).	
817.0 <i>6</i> 820.6 ^{<i>d</i>} <i>6</i>	1.1 <i>5</i> 0.6 <i>3</i>	1290.3 1323.4?	5/2+	473.24 502.9	5/2 ⁺ 3/2 ⁺					

4

 $^{127}_{52}\text{Te}_{75}\text{-}4$

$\gamma(^{127}\text{Te})$ (continued)

E_{γ}^{\dagger}	I_{γ}^{c}	E _i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f \mathbf{J}_f^{\pi}$	Mult. [#]
924.4 9	1.4 2	924.3	$7/2^{+}$	$0.0 \ 3/2^+$	
1141.6 8	1.0 2	1140.9	$5/2^{+}$	0.0 3/2+	D+Q
1155.2 ^{&d} 10	0.11 6	1155.4	$5/2^{+}$	0.0 3/2+	
1290.3 8	1.0 3	1290.3	$5/2^{+}$	$0.0 \ 3/2^+$	(D+Q)
1377.9 9	0.2 1	1377.9	$5/2^{+}$	0.0 3/2+	

[†] From 1967Ra13, except as noted.

[‡] Theoretical conversion coefficients are calculated using BrIcc code for the multipolarity and mixing ratio indicated.

[#] From $\gamma(\theta)$ (1972Kr15) and $\gamma\gamma(\theta)$ (1974So03,1985De04). The $J^{\pi'}$ s of initial and final levels of transitions are determined independently by (pol d,p) as shown in Adopted Levels. The assignments of transition multipolarities by $\gamma(\theta)$ and $\gamma\gamma(\theta)$ also support the results (evaluator).

[@] From $\gamma\gamma(\theta)$ (1985De04), unless otherwise noted.

[&] Reported in 1967Ta05 only.

^{*a*} From 1967Ta05.

^{*b*} From $\gamma\gamma$ coin (1967Ra13).

^c For absolute intensity per 100 decays, multiply by 0.368 20.
 ^d Placement of transition in the level scheme is uncertain.

 $x \gamma$ ray not placed in level scheme.

From ENSDF

