History							
Туре	Author	Citation	Literature Cutoff Date				
Full Evaluation	A. Hashizume	NDS 112, 1647 (2011)	1-Oct-2009				

Parent: ¹²⁷In: E=420 65; $J^{\pi}=(1/2^{-})$; $T_{1/2}=3.67$ s 4; $Q(\beta^{-})=6510$ 30; % β^{-} decay=100.0

2004Ga24: ²³⁵U(n,F) E=th, on-line mass separation; γ , β , $\gamma\gamma$ coin, $\beta\gamma$ coin.

1980De35: ²³⁵U(n,F) E=th, on-line mass separation; γ , β , ce, $\gamma\gamma$ coin, $\beta\gamma$ coin.

1986Go10: ²³⁵U(n,F) E=th, on-line mass separation; γ , β , γ (t).

Others: 1975DeZU, 1978Al18.

The decay scheme is that proposed by 2004Ga24. Because of the large difference between the β -decay Q-value and the reported maximum level energy, evaluator considers that the decay scheme is not yet complete.

¹²⁷Sn Levels

Configuration from 2004Ga24.

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	Comments
0.0	11/2-	2.10 h 4	Configuration= $(\nu h_{11/2})$.
4.9 <i>4</i>	$3/2^{+}$	4.13 min 3	Configuration= $(\nu d_{3/2})$.
			E(level): from ¹²⁷ In β^- decay (1.09 s).
257.6 4	$(1/2)^+$		Configuration=($\nu s_{1/2}$).
646.33 <i>4</i>	$(9/2)^{-}$		Configuration= $(^{128}$ Sn 2 ⁺)(ν (h _{11/2}) ⁻¹).
809.9 4	$(5/2^+)$		
953.9 4	(1/2, 3/2)		Configuration= $({}^{128}$ Sn 2 ⁺)(ν (d _{3/2}) ⁻¹) and/or (128 Sn 2 ⁺)(ν (s _{1/2}) ⁻¹).
963.73 10	$(7/2^{-})$		Configuration= $(^{128}$ Sn 2 ⁺)(ν (h _{11/2}) ⁻¹).
1090.5 4	(1/2,3/2)		Configuration= $({}^{128}$ Sn 2 ⁺)(ν (d _{3/2}) ⁻¹) and/or (128 Sn 2 ⁺)(ν (s _{1/2}) ⁻¹).
1233.4 4	$(3/2^+)$		Configuration= $({}^{128}$ Sn 2 ⁺)(ν (d _{3/2}) ⁻¹) and/or (128 Sn 2 ⁺)(ν (s _{1/2}) ⁻¹).
1331.4 4	$(5/2^+)$		Configuration= $(\nu d_{5/2})$.
1819.8 5	(1/2, 3/2)		
2260.2 10	(1/2, 3/2)		
2886.1 7	(1/2, 3/2)		
3333.3 4	(3/2)		
3397.5 4	(1/2, 3/2)		
3564.4 6	(3/2)		

 † From a least-squares fit to E($\gamma's).$

[‡] From Adopted Levels.

β^{-} radiations

E(decay) [‡]	E(level)	Iβ ^{−†#@}	Log ft		Comments	
$(3.37 \times 10^3 7)$	3564.4	0.27 4	6.7	av Eβ=1416 34		
$(3.53 \times 10^3 7)$	3397.5	1.46 20	6.0	av Eβ=1495 <i>34</i>		
$(3.60 \times 10^3 7)$	3333.3	6.9 7	5.4	av Eβ=1525 <i>34</i>		
$(4.04 \times 10^3 7)$	2886.1	0.31 5	7.0	av Eβ=1736 <i>34</i>		
$(4.67 \times 10^3 \ 7)$	2260.2	0.52 10	7.0	av Eβ=2032 34		
$(5.11 \times 10^3 7)$	1819.8	0.08 6	8.0	av Eβ=2241 34		
$(5.70 \times 10^3 7)$	1233.4	1.03 15	7.1	av Eβ=2519 <i>34</i>		
$(5.84 \times 10^3 7)$	1090.5	4.2 5	6.5	av Eβ=2587 34		
$(5.98 \times 10^3 7)$	953.9	1.60 18	7.0	av Eβ=2652 34		
$(6.67 \times 10^3 7)$	257.6	36 <i>3</i>	5.9	av Eβ=2982 34		
$(6.93 \times 10^3 7)$	4.9	52 4	5.8	av Eβ=3102 34		

Continued on next page (footnotes at end of table)

 ${}^{127}_{50}$ Sn₇₇-1

¹²⁷In β^- decay (3.67 s) 2004Ga24,1980De35 (continued)

β^{-} radiations (continued)

[†] From intensity balance of transitions. Values are, however, still tentative. It is because unobserved γ 's from higher levels.

[‡] From 1978Al18.
[#] Absolute intensity per 100 decays.
[@] Absolute intensity per 100 decays.

$\gamma(^{127}{\rm Sn})$

I γ normalization: From $\Sigma(I\gamma$ to g.s.)+ $\Sigma(I\gamma$ to 4.9 level)=100, assuming I $_{\beta}$ to 4.9 level is 52 4 per 100 decays and no β feeding to g.s. Others: 0.38 5 from absolute measurement of 252.70y (1986Go10).

E_{γ}^{\ddagger}	I_{γ} ^{‡&}	E_i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. [#]	α^{\dagger}	Comments
137 ^{@a} 1 144.02 <i>16</i>	@ 0.27 4	1090.5 953.9	(1/2,3/2) (1/2,3/2)	953.9 809.9	(1/2,3/2) (5/2 ⁺)	[M1]	0.203	$\alpha(K)=0.175 \ 3; \ \alpha(L)=0.0222 \ 4;$ $\alpha(M)=0.00435 \ 7;$ $\alpha(N+)=0.000890 \ 13$ $\alpha(N)=0.000819 \ 12; \ \alpha(O)=7.10\times10^{-5}$
252.70 4	100	257.6	(1/2)+	4.9	3/2+	M1	0.0446	$\alpha(K)\exp=0.039\ 2\ (1980De35);$ $K/L=7.3\ 4\ (1980De35)$ $\alpha(K)=0.0387\ 6;\ \alpha(L)=0.00482\ 7;$ $\alpha(M)=0.000944\ 14;$ $\alpha(N+)=0.000193\ 3$ $\alpha(N)=0.0001776\ 25;$ $\alpha(O)=1.549\times10^{-5}\ 22$ $I_{\gamma}:\ 43\ 3\ per\ 100\ decays;\ weighted average\ of\ 43.5\ 23\ (1993RuZW)$ and 38\ 5\ (1986Go10). Mult: from $\alpha(K)\exp$ and K/I
317.61 16	0.032 6	963.73	(7/2 ⁻)	646.33	(9/2)-	[M1]	0.0247	$\alpha(K)=0.0214 \ 3; \ \alpha(L)=0.00265 \ 4; \alpha(M)=0.000518 \ 8; \alpha(N+)=0.0001060 \ 15 \alpha(N)=9.75\times10^{-5} \ 14; \alpha(O)=8.52\times10^{-6} \ 12$
646.34 <i>4</i>	0.032 6	646.33	(9/2) ⁻	0.0	11/2-	M1	0.00427 6	$\alpha(K) \exp < 0.004$ $\alpha = 0.00427 \ 6; \ \alpha(K) = 0.00372 \ 6;$ $\alpha(L) = 0.00449 \ 7;$ $\alpha(M) = 8.78 \times 10^{-5} \ 13;$ $\alpha(N+) = 1.80 \times 10^{-5} \ 3$ $\alpha(N) = 1.654 \times 10^{-5} \ 24;$
696.4 <i>3</i> 805.00 <i>5</i> 832.83 <i>15</i> 948.90 <i>17</i> 963.61 <i>12</i>	0.69 7 0.27 4 5.3 5 2.7 3 0.0 2	953.9 809.9 1090.5 953.9	(1/2,3/2) $(5/2^+)$ (1/2,3/2) (1/2,3/2) $(7/2^-)$	257.6 4.9 257.6 4.9	$(1/2)^+$ $3/2^+$ $(1/2)^+$ $3/2^+$ $11/2^-$			$\alpha(0) = 1.456 \times 10^{-6} 21$
905.01 12 975.8 4 1073.8 8 1085.62 18 1169.7 9 1228.4 3	$\begin{array}{c} 0.9 \ 2 \\ 1.3 \ 2 \\ 0.027 \ 7 \\ 6.6 \ 6 \\ 1.2 \ 2 \\ 1.1 \ 2 \end{array}$	905.75 1233.4 1331.4 1090.5 2260.2 1233.4	(7/2) $(3/2^+)$ $(5/2^+)$ (1/2,3/2) (1/2,3/2) $(3/2^+)$	0.0 257.6 257.6 4.9 1090.5 4.9	$ \begin{array}{c} 11/2 \\ (1/2)^+ \\ (1/2)^+ \\ 3/2^+ \\ (1/2,3/2) \\ 3/2^+ \end{array} $			
1326.47 9 1513.0 9 1814.8 3	0.54 6 0.43 9 0.61 10	1331.4 3333.3 1819.8	$(5/2^+)$ (3/2) (1/2,3/2)	4.9 1819.8 4.9	3/2 ⁺ (1/2,3/2) 3/2 ⁺			

Continued on next page (footnotes at end of table)

27 In β^{-} decay (3.67 s)	2004Ga24,1980De35 (continued)
---------------------------------------	-------------------------------

$\gamma(^{127}\text{Sn})$	(continued)
---------------------------	-------------

E_{γ}^{\ddagger}	I_{γ} [‡] &	E_i (level)	\mathbf{J}_i^{π}	E_f	${ m J}_f^\pi$
2001.9 7	0.57 6	3333.3	(3/2)	1331.4	$(5/2^+)$
2242.8 2	0.96 11	3333.3	(3/2)	1090.5	(1/2, 3/2)
2369.5 3	0.95 11	3333.3	(3/2)	963.73	$(7/2^{-})$
2628.5 6	0.71 9	2886.1	(1/2, 3/2)	257.6	$(1/2)^+$
3075.62 10	9.6 10	3333.3	(3/2)	257.6	$(1/2)^+$
3139.8 2	3.4 4	3397.5	(1/2, 3/2)	257.6	$(1/2)^+$
3306.7 4	0.62 7	3564.4	(3/2)	257.6	$(1/2)^+$
3328.20 19	3.6 4	3333.3	(3/2)	4.9	$3/2^{+}$

 † Theoretical conversion coefficients are calculated using BrIcc code for the multipolarity indicated.

[‡] For unplaced transitions that could belong to 3.67-s, 1.09-s, and/or 1.04-s, β^- decay, see 1.09-s β^- decay.

[#] The multipolarities in brackets were assumed by evaluator to obtain transition intensities, and are not used for spin and parity determination. For the estimation of J^{π} , see adopted files.

[@] From the drawing of decay scheme (1980De35); weak, no intensity is given. Not reported by 2004Ga24.

[&] For absolute intensity per 100 decays, multiply by 0.40 4.

^{*a*} Placement of transition in the level scheme is uncertain.

¹²⁷In β^- decay (3.67 s) 2004Ga24,1980De35

