¹²⁷In β^- decay (1.09 s) 2004Ga24

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	A. Hashizume	NDS 112, 1647 (2011)	1-Oct-2009

Parent: ¹²⁷In: E=0.0; $J^{\pi}=(9/2^+)$; $T_{1/2}=1.09$ s *1*; $Q(\beta^-)=6510 \ 30$; $\%\beta^-$ decay=100.0

2004Ga24: ²³⁵U(n,F) E=th, on-line mass separation; γ , β , $\gamma\gamma$ coin, $\beta\gamma$ coin.

1980De35: ²³⁵U(n,F) E=th, on-line mass separation; γ , β , ce, $\gamma\gamma$ coin, $\beta\gamma$ coin.

1986Go10: ²³⁵U(n,F) E=th, on-line mass separation; γ , β , γ (t).

Others: 1975DeZU, 1978Al18, 1979DeZR.

The decay scheme is that proposed by 2004Ga24. Because of the large difference between the β -decay Q-value and the reported maximum level energy, evaluator considers that the decay scheme is not yet complete.

¹²⁷Sn Levels

Configurations are from (2004Ga24).

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	Comments
0.0	11/2-	2.10 h 4	Configuration= $(\nu h_{11/2})^{-1}$.
5.07 6	3/2+	4.13 min 3	Configuration= $(\nu d_{3/2})^{-1}$.
257.76 8	$(1/2)^+$		Configuration= $(\nu s_{1/2})^{-1}$.
646.31 4	$(9/2)^{-}$		Configuration= $(^{128}$ Sn 2 ⁺) $(\nu h_{11/2}^{-1})$.
809.94 6	$(5/2^+)$		
953.95 9	(1/2, 3/2)		Configuration= $({}^{128}$ Sn 2 ⁺)(ν d _{3/2} ⁻¹) or (128 Sn 2 ⁺)(ν s _{1/2} ⁻¹).
963.61 6	$(7/2^{-})$		Configuration= $({}^{128}$ Sn 2 ⁺)(ν h ${}^{-1}_{11/2}$).
1053.62 6	$(7/2^+)$		Configuration= $({}^{128}$ Sn 2 ⁺)($\nu d_{3/2}^{-\gamma}$).
1233.41 24	$(3/2^+)$		Configuration= $({}^{128}$ Sn 2 ⁺) $(\nu d_{3/2}^{-1})$ or $({}^{128}$ Sn 2 ⁺) $(\nu s_{1/2}^{-1})$.
1331.55 11	$(5/2^+)$		Configuration= $(\nu d_{5/2}^{-1})$.
1555.91 6	$(7/2^{-}, 9/2^{+})$		
1602.65 6	$(7/2^+)$		Configuration= $(\nu g_{7/2}^{-1})$.
1618.41 <i>16</i>	$(7/2, 9/2^+)$		
1702.59 7	$(7/2^+)$		
1909.54 7	$(7/2^+)$		
2024.21 8	$(7/2^+)$		
2042.52 11	$(1/2^{+})$		
2442.09 10	(1/2,9/2)		
2404.79 10	(1/2, 9/2) (7/2, 9/2)		
2791 38 15	(7/2, 9/2) (7/2, 9/2)		
2822.3 3	(7/2,9/2)		
	<u>\'I</u> - 1 = 1		

[†] From a least-squares fit to $E(\gamma' s)$.

[‡] From Adopted Levels.

 β^- radiations

E(decay)‡	E(level)	Ιβ ^{-†#}	Log ft	Comments
$(3.69 \times 10^3 \ 3)$	2822.3	0.101 17	6.8	av E β =1568 15
$(3.72 \times 10^3 \ 3)$	2791.38	0.51 6	6.1	av E β =1583 15
$(3.99 \times 10^3 \ 3)$	2515.25	0.35 4	6.4	av E β =1713 15
$(4.05 \times 10^3 \ 3)$	2464.79	0.78 8	6.0	av E β =1737 15
$(4.07 \times 10^3 \ 3)$	2442.69	1.17 11	5.9	av E β =1747 15
$(4.47 \times 10^3 \ 3)$	2042.52	1.03 8	6.1	av E β =1936 15
$(4.49 \times 10^3 \ 3)$	2024.21	3.7 3	5.6	av E β =1945 15
				Continued on next page (footnotes at end of table)

1

¹²⁷In β^- decay (1.09 s) 2004Ga24 (continued)

			β^- radiations (continued)
E(level)	Ιβ ^{-†#}	Log ft	Comments
1909.54	3.52 24	5.6	av E β =1999 15
1702.59	1.88 16	6.0	av E β =2097 15
1618.41	0.27 7	5.9	
1602.65	77 4	4.4	av E β =2145 <i>15</i> E(decay): E β =4890 <i>70</i> from weighted av of E β =4860 <i>80</i> and 4990 <i>160</i> (1978A118).
1555.91	0.71 25	6.5	av E β =2167 15
1331.55	0.34 8	6.9	av Eβ=2273 15
1053.62	4.7 8	5.8	av E β =2405 15
646.31	1.9 12	6.4	av E β =2598 15
	E(level) 1909.54 1702.59 1618.41 1602.65 1555.91 1331.55 1053.62 646.31	$\begin{array}{c c} \underline{E}(\text{level}) & \underline{I}\beta^{-\dagger \#} \\ \hline 1909.54 & 3.52 & 24 \\ 1702.59 & 1.88 & 16 \\ 1618.41 & 0.27 & 7 \\ 1602.65 & 77 & 4 \\ \hline 1555.91 & 0.71 & 25 \\ 1331.55 & 0.34 & 8 \\ 1053.62 & 4.7 & 8 \\ 646.31 & 1.9 & 12 \\ \end{array}$	$\begin{array}{c c} \underline{\mathrm{E}(\mathrm{level})} & \underline{\mathrm{I}}\beta^{-\dagger \ddagger} & \underline{\mathrm{Log}}ft \\ \hline 1909.54 & 3.52 24 & 5.6 \\ 1702.59 & 1.88 16 & 6.0 \\ 1618.41 & 0.27 7 & 5.9 \\ 1602.65 & 77 4 & 4.4 \\ \hline \\ 1555.91 & 0.71 25 & 6.5 \\ 1331.55 & 0.34 8 & 6.9 \\ 1053.62 & 4.7 8 & 5.8 \\ 646.31 & 1.9 12 & 6.4 \\ \hline \end{array}$

[†] From intensity balance of γ transitions. Values are, however, still tentative. It is because unobserved γ 's from higher levels.

[‡] From 1978Al18.

Absolute intensity per 100 decays.

[@] Existence of this branch is questionable.

 $\gamma(^{127}\text{Sn})$

I γ normalization: assumes no direct β -feedings to the ground state and 5.07 level. 2004Ga24 announce that β -feeding to ground state is less than 5%. Even allowing for 5% β -feeds the value will not change significantly. Other: the absolute branching of the 646.1 γ is 9.3% 7 or 6.2% 6 depending on the decay scheme used, after β and γ measurements. For the 1597.43 γ , the absolute branching is 9.3 7 or 6.2 6, depending on the decay scheme used 1993RuZW.

E_{γ}^{\dagger}	Ι _γ #b	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	J_f^π	Mult. ^{&a}	α [@]	Comments
144.02 16	0.13 3	953.95	(1/2,3/2)	809.94	(5/2+)	[M1]	0.203	$\alpha(K)=0.175 \ 3; \ \alpha(L)=0.0222 \ 4;$ $\alpha(M)=0.00435 \ 7; \ \alpha(N+)=0.000890$ 13
243.75 4	0.84 9	1053.62	(7/2+)	809.94	(5/2 ⁺)	M1,E2	0.060 11	$\alpha(N)=0.000819 \ 12; \ \alpha(O)=7.10\times10^{-5} \ 11 \\ \alpha(K)\exp=0.043 \ 17 \\ \alpha(K)=0.051 \ 9; \ \alpha(L)=0.0075 \ 23; \\ \alpha(M)=0.0015 \ 5; \ \alpha(N+)=0.00029 \ 9 \\ \alpha(D)=0.0025 \ 0; \ \alpha(D)=0.0025 \ 0; \\alpha(D)=0.0025 \ 0; \\alpha(D)=0.0025 \ 0; \\alpha(D)=0.0025 \ 0; \\alpha(D)=0.0025 \ 0; \\alpha(D)$
252.70 4	0.39 5	257.76	(1/2)+	5.07	3/2+	M1	0.0446	$\alpha(N)=0.00027 8; \alpha(O)=2.0\times10^{-5} 4$ $\alpha(K)=0.0387 6; \alpha(L)=0.00482 7; \alpha(M)=0.000944 14; \alpha(N+)=0.000193$ $\beta \alpha(N)=0.0001776 25; \alpha(O)=1.549\times10^{-5}$ 22 Mathematical Science (Control of Control of
x270.9 [‡] 3	021							Mult.: Irolli 5.67-8 decay.
317.61 <i>16</i>	0.27 3	963.61	(7/2 ⁻)	646.31	(9/2)-	[M1]	0.0247	$ \begin{array}{l} \alpha({\rm K}) {=} 0.0214 \ 3; \ \alpha({\rm L}) {=} 0.00265 \ 4; \\ \alpha({\rm M}) {=} 0.000518 \ 8; \ \alpha({\rm N} {+}) {=} 0.0001060 \\ 15 \end{array} $
								$\alpha(N)=9.75\times10^{-5}$ 14; $\alpha(O)=8.52\times10^{-6}$
321.7 4	0.102 11	2024.21	(7/2 ⁺)	1702.59	(7/2+)	[M1]	0.0239	$\alpha(K)=0.0207 \ 3; \ \alpha(L)=0.00256 \ 4; \ \alpha(M)=0.000501 \ 8; \ \alpha(N+)=0.0001026 \ 15 \ \alpha(N)=9.43\times10^{-5} \ 14; \ \alpha(O)=8.24\times10^{-6} \ 12$

Continued on next page (footnotes at end of table)

¹²⁷In β^{-} decay (1.09 s) 2004Ga24 (continued)

$\gamma(^{127}\text{Sn})$ (continued)

E_{γ}^{\dagger}	$I_{\gamma}^{\#b}$	E_i (level)	\mathbf{J}_i^{π}	E_f	J_f^π	Mult. ^{&a}	$\alpha^{@}$	Comments
353.63 9	1.02 10	1909.54	(7/2+)	1555.91	(7/2 ⁻ ,9/2 ⁺)	[M1]	0.0188	$\alpha(K)=0.01628 \ 23; \alpha(L)=0.00201 \ 3; \alpha(M)=0.000392 \ 6; \alpha(N+)=8.04\times10^{-5} \ 12 \alpha(N)=7.39\times10^{-5} \ 11;$
421.56 8	0.155 18	2024.21	(7/2+)	1602.65	(7/2 ⁺)	[M1]	0.01207	$\alpha(O)=6.47 \times 10^{-6} \ 9$ $\alpha(K)=0.01048 \ 15;$ $\alpha(L)=0.001284 \ 18;$ $\alpha(M)=0.000251 \ 4;$ $\alpha(N+)=5.14 \times 10^{-5} \ 8$ $\alpha(N)=4.73 \times 10^{-5} \ 7;$
424.4 2	0.60 6	2042.52	(7/2 ⁺)	1618.41	(7/2,9/2+)	[M1]	0.01187	$\alpha(O)=4.14\times10^{-6} \ 6$ $\alpha(K)=0.01031 \ 15;$ $\alpha(L)=0.001262 \ 18;$ $\alpha(M)=0.000247 \ 4;$ $\alpha(N+)=5.06\times10^{-5} \ 8$ $\alpha(N)=4.65\times10^{-5} \ 7;$
468.3 2	2.34 24	2024.21	(7/2+)	1555.91	(7/2 ⁻ ,9/2 ⁺)	[M1]	0.00930 <i>13</i>	$\alpha(O)=4.08\times10^{-6} \ 6$ $\alpha=0.00930 \ 13; \ \alpha(K)=0.00808$ $12; \ \alpha(L)=0.000987 \ 14; \alpha(M)=0.000193 \ 3; \alpha(N+)=3.95\times10^{-5} \ 6$ $\alpha(N)=3.63\times10^{-5} \ 6; $
487.2 3	0.23 3	2042.52	(7/2 ⁺)	1555.91	(7/2 ⁻ ,9/2 ⁺)	[M1]	0.00844 12	$\alpha(O)=3.19\times10^{-6} 5$ $\alpha=0.00844 \ I2; \ \alpha(K)=0.00734$ $I1; \ \alpha(L)=0.000895 \ I3; \alpha(M)=0.0001749 \ 25; \alpha(N+)=3.58\times10^{-5} $ $\alpha(N)=3.29\times10^{-5} \ 5; \alpha(O)=2.89\times10^{-6} \ 4$
502.6 5	0.18 2	1555.91	$(7/2^-, 9/2^+)$	1053.62	$(7/2^+)$			$u(0) = 2.09 \times 10^{-7}$
x523.3 ⁺ 3 549.14 <i>12</i> 565.3 <i>10</i> 577.9 <i>5</i> 592.1 <i>4</i> 639.07 <i>4</i> 646.34 <i>4</i>	$\begin{array}{c} 0.1 \ I \\ 0.50 \ 5 \\ 0.10 \ 3 \\ 0.36 \ 4 \\ 0.25 \ 4 \\ 6.0 \ 6 \\ 14.5 \ 15 \end{array}$	1602.65 1618.41 1909.54 1555.91 1602.65 646.31	$(7/2^+)$ $(7/2,9/2^+)$ $(7/2^+)$ $(7/2^-,9/2^+)$ $(7/2^+)$ $(9/2)^-$	1053.62 1053.62 1331.55 963.61 963.61 0.0	(7/2 ⁺) (7/2 ⁺) (5/2 ⁺) (7/2 ⁻) (7/2 ⁻) 11/2 ⁻	M1,E2	0.0040 <i>3</i>	α (K)exp<0.004 α =0.0040 3; α (K)=0.0034 3; α (L)=0.000430 21;
649.1 5 696.4 3 740.0 8 746.07 8 748.9 3	0.32 5 0.27 4 0.011 7 1.20 <i>1</i> 2 0.23 <i>3</i>	1702.59 953.95 2442.69 1555.91 1702.59	$(7/2^+)$ (1/2,3/2) (7/2,9/2) $(7/2^-,9/2^+)$ $(7/2^+)$	1053.62 257.76 1702.59 809.94 953.95	$(7/2^+)$ $(1/2)^+$ $(7/2^+)$ $(5/2^+)$ (1/2,3/2)			$\alpha(L)=0.000450\ 21;$ $\alpha(M)=8.4\times10^{-5}\ 4;$ $\alpha(N+)=1.71\times10^{-5}\ 10$ $\alpha(N)=1.58\times10^{-5}\ 8;$ $\alpha(O)=1.34\times10^{-6}\ 12$
792.76 5 805.00 5 808.8 4 809.7 6 840.4 8	3.7 4 13.3 14 0.60 7 0.13 4 0.123 17	1602.65 809.94 1618.41 2042.52 2442.69	$(7/2^+)$ $(5/2^+)$ $(7/2,9/2^+)$ $(7/2^+)$ (7/2,9/2)	809.94 5.07 809.94 1233.41 1602.65	$(5/2^+) 3/2^+ (5/2^+) (3/2^+) (7/2^+)$			

Continued on next page (footnotes at end of table)

			127 In β^{-}	decay (1.0	09 s)	2004Ga24 (continued
				$\gamma(^{12})$	⁷ Sn) (co	ontinued)
${\rm E_{\gamma}}^{\dagger}$	Ι _γ # <i>b</i>	E _i (level)	\mathbf{J}_i^π	E_f	\mathbf{J}_{f}^{π}	
855.94 4	1.94 20	1909.54	$(7/2^+)$	1053.62	$(7/2^+)$	
892.65 4	1.91 <i>19</i>	1702.59	$(7/2^+)$	809.94	$(5/2^+)$	
909.67 8	0.72 7	1555.91	$(7/2^-, 9/2^+)$	646.31	$(9/2)^{-}$	
945.9 2	0.66 8	1909.54	$(7/2^+)$	963.61	$(7/2^{-})$	
948.90 17	1.00 10	953.95	(1/2, 3/2)	5.07	3/2+	
956.32 9	10.1 10	1602.65	$(7/2^+)$	646.31	$(9/2)^{-}$	
963.61 12	7.8 8	963.61	$(7/2^{-})$	0.0	$11/2^{-}$	
970.5 2	0.47 5	2024.21	$(7/2^+)$	1053.62	$(7/2^+)$	
972.5 6	0.047 13	1618.41	$(7/2, 9/2^+)$	646.31	$(9/2)^{-}$	
975.8 4	0.07 2	1233.41	$(3/2^+)$	257.76	$(1/2)^{+}$	
×977‡ 1	0.3 1					
^x 980 [‡] 1	0.2 1					
989.4 2	0.38 4	2042.52	$(7/2^+)$	1053.62	$(7/2^+)$	
1048.54 <i>3</i>	11.9 11	1053.62	$(7/2^+)$	5.07	3/2+	
1070.54 10	0.89 13	2024.21	$(7/2^+)$	953.95	(1/2,3/2)	2)
1073.8 8	0.050 15	1331.55	$(5/2^+)$	257.76	$(1/2)^+$,
1088.34 9	0.26 5	2042.52	$(7/2^+)$	953.95	(1/2, 3/2)	2)
1099.6 2	0.97 10	1909.54	$(7/2^+)$	809.94	$(5/2^+)$	
1111.0 6	0.09 3	2442.69	(7/2, 9/2)	1331.55	$(5/2^+)$	
1133.2 7	0.045 15	2464.79	(7/2, 9/2)	1331.55	$(5/2^+)$	
1184.0 9	0.027 12	2515.25	(7/2, 9/2)	1331.55	$(5/2^+)$	
1214.04 9	1.84 18	2024.21	$(7/2^+)$	809.94	$(5/2^+)$	
1228.4 <i>3</i>	0.06 2	1233.41	$(3/2^+)$	5.07	$3/2^{+}$	
1262.8 5	0.07 2	1909.54	$(7/2^+)$	646.31	$(9/2)^{-}$	
1326.47 9	1.01 10	1331.55	$(5/2^+)$	5.07	$3/2^{+}$	
1389.07 8	1.19 12	2442.69	(7/2,9/2)	1053.62	$(7/2^+)$	
1411.3 2	0.14 4	2464.79	(7/2,9/2)	1053.62	$(7/2^+)$	
^x 1436.6 [‡] 3	0.6 1					
1555.70 10	2.37 24	1555.91	$(7/2^{-}, 9/2^{+})$	0.0	$11/2^{-}$	
1597.43 6	100	1602.65	$(7/2^+)$	5.07	$3/2^{+}$	
1602.6 5	0.5 2	1602.65	$(7/2^+)$	0.0	$11/2^{-}$	
1618.7 <i>3</i>	0.28 2	1618.41	$(7/2, 9/2^+)$	0.0	$11/2^{-}$	
1632.7 <i>3</i>	0.36 5	2442.69	(7/2,9/2)	809.94	$(5/2^+)$	
1697.3 2	0.60 6	1702.59	$(7/2^+)$	5.07	3/2+	
1705.3 2	0.07 3	2515.25	(7/2,9/2)	809.94	$(5/2^+)$	
1737.8 <i>3</i>	0.14 4	2791.38	(7/2,9/2)	1053.62	$(7/2^+)$	
1768.8 <i>3</i>	0.05 2	2822.3	(7/2,9/2)	1053.62	$(7/2^+)$	
^x 1771 [‡] 1	0.2 1					
1796.2 6	0.05 2	2442.69	(7/2,9/2)	646.31	$(9/2)^{-}$	
1818.6 4	0.10 3	2464.79	(7/2,9/2)	646.31	$(9/2)^{-}$	
1827.5 6	0.027 13	2791.38	(7/2,9/2)	963.61	$(7/2^{-})$	
1858.4 6	0.030 9	2822.3	(7/2, 9/2)	963.61	$(7/2^{-})$	
1904.1 2	0.46 4	1909.54	$(7/2^+)$	5.07	$3/2^{+}$	
1981.40 <i>17</i>	0.57 6	2791.38	(7/2,9/2)	809.94	$(5/2^+)$	
2145.2 4	0.056 10	2791.38	(7/2,9/2)	646.31	$(9/2)^{-}$	
2175.7 7	0.078 12	2822.3	(7/2,9/2)	646.31	$(9/2)^{-}$	
2464.70 12	0.93 10	2464.79	(7/2,9/2)	0.0	$11/2^{-}$	
^x 2511 [‡] 1	1.0 1					
2515.2 2	0.45 4	2515.25	(7/2,9/2)	0.0	$11/2^{-}$	

[†] From 2004Ga24. [‡] γ assigned either to 1.09-s or 3.65-s ¹²⁷In by (1980De35). There is also possible contribution from 1.04-s ¹²⁷In (evaluator).

¹²⁷In β^{-} decay (1.09 s) 2004Ga24 (continued)

$\gamma(^{127}\text{Sn})$ (continued)

However, these γ 's were not reported by 2004Ga24.

- [#] From 2004Ga24. Relative to $I\gamma(1597\gamma)=100$.
- [@] Theoretical conversion coefficients are calculated using BrIcc code for the multipolarity indicated.
- & From α (K)exp (1980De35) and from K/L(1980De35).

^a The multipolarities in brackets were assumed by evaluator to obtain transition intensities, and not used for spin and parity determination. ^b For absolute intensity per 100 decays, multiply by 0.64 3.

 $x \gamma$ ray not placed in level scheme.

¹²⁷In β^- decay (1.09 s) 2004Ga24

Decay Scheme

¹²⁷In β^- decay (1.09 s) 2004Ga24

