127 In β^- decay (1.04 s) 2004Ga24

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	A. Hashizume	NDS 112, 1647 (2011)	1-Oct-2009

Parent: ¹²⁷In: E=1863 58; $J^{\pi}=(21/2^{-})$; $T_{1/2}=1.04$ s 10; $Q(\beta^{-})=6510$ 30; $\%\beta^{-}$ decay=100.0

2004Ga24: ²³⁵U(n,F) E=th, on-line mass separation; γ , β , $\gamma\gamma$ coin, $\beta\gamma$ coin.

1980De35: ²³⁵U(n,F) E=th, on-line mass separation; γ , β , ce, $\gamma\gamma$ coin, $\beta\gamma$ coin.

1986Go10: ²³⁵U(n,F) E=th, on-line mass separation; γ , β , γ (t).

Others: 1975DeZU, 1978Al18, 1979DeZR.

The decay scheme is that proposed by 2004Ga24. Because of the large difference between the β -decay Q-value and the reported maximum level energy, evaluator considers that the decay scheme is not yet complete.

127Sn Levels

Configurations from 2004Ga24, based on the shell model calculations.

E(level) [†]	$J^{\pi \#}$	T _{1/2} ‡	Comments
0.0	11/2-	2.10 h 4	
646.34 <i>4</i>	$(9/2)^{-}$		Configuration= $((^{128}\text{Sn } 2^+)(\nu h_{11/2})^{-1}).$
1094.60 15	$(15/2^{-})$		Configuration= $((^{128}\text{Sn } 2^+)(\nu h_{11/2})^{-1}).$
1242.79 13	$(13/2^{-})$		Configuration= $((^{128}\text{Sn } 2^+)(\nu h_{11/2})^{-1}).$
1501.5? 4			The order of feeding 2103.8 γ and 406.9 γ is not known.
1625.32 19			
1810.12 15	$(15/2^+)$		
1826.67 16	(19/2+)	4.52 μs 15	Configuration=($(^{128}$ Sn 5 ⁻)(ν h ⁻¹ _{11/2})). T _{1/2} : weighted average of 4.4 μ s 2 (2008Lo07), 4.8 μ s 3 (2004Ga24) and 4.5 μ s 3 (200Pi03); other: 3.1 μ s 9 (1980De35).
1916.45 18	$(19/2^{-})$		
1930.96 17	$(23/2^+)$	1.19 μs <i>13</i>	T _{1/2} : weighted average of 0.9 μ s 3 (2008Lo07) and 1.26 μ s 15 (2004Ga24). Configuration=((¹²⁸ Sn 7 ⁻)(ν h _{11/2}) ⁻¹).
2045.96 20	(19/2)		
2047.3 <i>3</i> 2083.5 <i>4</i>	(19/2 ⁻)		
2165.8 <i>3</i>	(19/2)		
2232.09 20	$(21/2^+)$		
2311.8 3	(19/2, 17/2)		
2630.4 4	(19/2,21/2)		
2/33.82.24			
3287.07 21	$(10/2^{-})$		Configuration $-((128 \text{ Sp} 7^{-})(1, q_{-1})^{-1})$
3647 22 24	(19/2)		$Configuration=((Sin 7)(Vg_{7/2})).$
3860.9.9	(1)/2,21/2)		
3899.5 11			

[†] From a least-squares fit to $E(\gamma' s)$. [‡] $\gamma(t)$ from ¹²⁷Sn produced by ⁹Be(²³⁸U,F) and ⁹Be(¹³⁶Xe,X) (2008Lo07); $\gamma(t)$ from ¹²⁷Sn produced by by ²³³U(n,F) and 239 Pu(n,F) (2000Pi03)); from $\beta\gamma$ (t) delayed coincidence (2004Ga24): for all excited states.

From Adopted Levels.

127 In β^- decay (1.04 s) 2004Ga24 (continued)

β^{-} radiations

E(decay)†	E(level)	Ιβ ^{-‡#}	Log ft	Comments
$(4.47 \times 10^3 7)$	3899.5	0.68 18	6.3	av Eβ=1939 31
$(4.51 \times 10^3 7)$	3860.9	0.43 18	6.5	av E β =1958 <i>31</i>
$(4.73 \times 10^3 7)$	3647.22	6.0 8	5.4	av E β =2059 31
$(4.77 \times 10^3 7)$	3605.13	53 4	4.5	av E β =2079 31
$(5.09 \times 10^3 7)$	3287.67	0.9 6	6.4	av E β =2229 31
$(5.74 \times 10^3 7)$	2630.4	0.9 4	6.6	av E β =2541 31
$(6.14 \times 10^3 7)$	2232.09	3.3 6	6.2	av E β =2730 31
$(6.21 \times 10^3 7)$	2165.8	1.0 8	6.7	av E β =2761 31
$(6.33 \times 10^3 7)$	2047.3	4.0 10	6.2	av E β =2818 <i>31</i>
$(6.33 \times 10^3 7)$	2045.96	1.6 6	6.6	av E β =2818 <i>31</i>
$(6.46 \times 10^3 7)$	1916.45	1.6 6	6.6	av E β =2880 31
$(6.55 \times 10^3 7)$	1826.67	16 6	5.6	av E β =2922 31
$(6.75 \times 10^3 7)$	1625.32	1.0 4	6.9	av E β =3018 31
$(7.13 \times 10^3 7)$	1242.79	3.7 15	6.4	av E β =3199 31

[†] From 1978Al18. [‡] From the large difference between Q_{β} and the maximum level energy proposed, I_{β} 's are still tentative (evaluator). [#] Absolute intensity per 100 decays.

 $\gamma(^{127}\text{Sn})$

I γ normalization: From the assumption of no direct β -feedings to the ground state. from the large difference between Q_{β} and the maximum level energy proposed, is tentative (evaluator).

$E_{\gamma}^{\dagger\ddagger}$	$I_{\gamma}^{\ddagger \# b}$	E _i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult. ^{&a}	$\alpha^{@}$	Comments
16.52 <i>11</i>	0.026 2	1826.67	(19/2 ⁺)	1810.12 (15/2+)	E2	2.32×10 ³ 9	$\alpha(L)=1.87\times10^3 7; \alpha(M)=384 15; \alpha(N+)=67.3 25 \alpha(N)=65.9 25; \alpha(O)=1.36 5 I_{\gamma}: Evaluator assumed relative intensity uncertainty is about 20%. The intensities are estimated from transition intensity balance of 4.52 \mus isomer by evaluator.$
104.30 6	4.1 4	1930.96	(23/2+)	1826.67 (19/2+)	[E2]	1.374	α (K)=1.008 <i>15</i> ; α (L)=0.294 <i>5</i> ; α (M)=0.0600 <i>9</i> ; α (N+)=0.01110 <i>16</i> α (N)=0.01063 <i>16</i> ; α (O)=0.000474 <i>7</i>
184.81 <i>13</i>	1.65 20	1810.12	(15/2 ⁺)	1625.32	[M1]	0.1027	$\alpha(K)=0.0889 \ 13; \ \alpha(L)=0.01118 \ 16; \\ \alpha(M)=0.00219 \ 3; \ \alpha(N+)=0.000448 \\ 7 \\ \alpha(N)=0.000412 \ 6; \ \alpha(O)=3.58\times10^{-5} \ 5 \\ \alpha(O)=0.000412 \ 6; \ \alpha(O)=0.000$
219.2 2	2.3 3	2045.96	(19/2)	1826.67 (19/2 ⁺)	[M1]	0.0650	$\begin{array}{l} \alpha(\mathbf{N}) = 0.056182 \ \alpha(\mathbf{U}) = 0.00704 \ 10; \\ \alpha(\mathbf{M}) = 0.001380 \ 20; \\ \alpha(\mathbf{N}+) = 0.000282 \ 4 \\ \alpha(\mathbf{N}) = 0.000280 \ 4; \ \alpha(\mathbf{Q}) = 2.26 \times 10^{-5} \ 4 \end{array}$
236.0 2	1.1 2	2045.96	(19/2)	1810.12 (15/2 ⁺)	[E2]	0.0789	$\begin{array}{l} \alpha(\mathrm{K}) = 0.005200 \ 4, \ \alpha(\mathrm{C}) = 2.20 \times 10^{-4} \ 4 \\ \alpha(\mathrm{K}) = 0.0053 \ 10; \ \alpha(\mathrm{L}) = 0.01097 \ 16; \\ \alpha(\mathrm{M}) = 0.00218 \ 4; \ \alpha(\mathrm{N} +) = 0.000424 \\ 6 \\ \alpha(\mathrm{N}) = 0.000398 \ 6; \ \alpha(\mathrm{O}) = 2.61 \times 10^{-5} \ 4 \end{array}$

 $^{127}_{50}$ Sn₇₇-3

¹²⁷In β^- decay (1.04 s) 2004Ga24 (continued)

$\gamma(^{127}\text{Sn})$ (continued)

$E_{\gamma}^{\dagger\ddagger}$	$I_{\gamma}^{\ddagger \# b}$	E _i (level)	\mathbf{J}_i^π	E_f	J_f^π	Mult. ^{&a}	α [@]	Comments
257.3 7	3.1 4	2083.5		1826.67	(19/2 ⁺)	[M1]	0.0426 7	$\alpha(\mathbf{K})=0.0369 \ 6; \ \alpha(\mathbf{L})=0.00459 \\ 8; \ \alpha(\mathbf{M})=0.000900 \ 15; \\ \alpha(\mathbf{N}+)=0.000184 \ 3 \\ \alpha(\mathbf{N})=0.000169 \ 3; \\ \alpha(\mathbf{Q})=1.477 \times 10^{-5} \ 24$
301.14 <i>13</i>	2.3 3	2232.09	(21/2 ⁺)	1930.96	(23/2 ⁺)	[M1]	0.0283	$\alpha(O) = 1.477 \times 10^{-2.47}$ $\alpha(K) = 0.0245 \ 4; \ \alpha(L) = 0.00304$ $5; \ \alpha(M) = 0.000155 \ 9;$ $\alpha(N+) = 0.0001120 \ 18 \ 18$ $\alpha(N) = 0.0001120 \ 16;$ $\alpha(O) = 0.78 \times 10^{-6} \ 14$
359.58 <i>13</i>	3.5 4	3647.22	(19/2,21/2)	3287.67		[M1]	0.0180	$\begin{array}{l} \alpha(0)=2.78\times10^{-17}\\ \alpha(K)=0.01561\ 22;\ \alpha(L)=0.00192\\ 3;\ \alpha(M)=0.000376\ 6;\\ \alpha(N+)=7.70\times10^{-5}\ 11\\ \alpha(N)=7.08\times10^{-5}\ 10;\\ \alpha(Q)=6\ 20\times10^{-6}\ 0 \end{array}$
395.6 7	1.3 4	2311.8	(19/2,17/2)	1916.45	(19/2 ⁻)	[M1]	0.01414	$\alpha(0)=0.20\times 10^{-9}$ $\alpha(K)=0.01228 \ 18;$ $\alpha(L)=0.001507 \ 23;$ $\alpha(M)=0.000295 \ 5;$ $\alpha(N+)=6.04\times 10^{-5} \ 9;$ $\alpha(N)=5.55\times 10^{-5} \ 9;$ $\alpha(Q)=4.86\times 10^{-6} \ 8;$
405.4 3	3.0 4	2232.09	(21/2+)	1826.67	(19/2 ⁺)	[M1]	0.01330	$\begin{array}{l} \alpha(0)=4.80\times10^{-6} & 3\\ \alpha(K)=0.01155 & 17;\\ \alpha(L)=0.001417 & 20;\\ \alpha(M)=0.000277 & 4;\\ \alpha(N+)=5.68\times10^{-5} & 8\\ \alpha(N)=5.22\times10^{-5} & 8;\\ \alpha(Q)=4.57\times10^{-6} & 7\end{array}$
406.9 7	1.7 3	1501.5?		1094.60	(15/2 ⁻)	[M1]	0.01318	$\alpha(K) = 0.01145 \ 17;$ $\alpha(L) = 0.001404 \ 21;$ $\alpha(M) = 0.000274 \ 4;$ $\alpha(N+) = 5.62 \times 10^{-5} \ 9$ $\alpha(N) = 5.17 \times 10^{-5} \ 8;$ $\alpha(Q) = 4.53 \times 10^{-6} \ 7$
464.6 <i>4</i> 501.9 <i>10</i> 567.26 <i>15</i> 583.2 <i>5</i>	1.11 21 0.5 2 10.4 10 1.70 20	2630.4 2733.82 1810.12 2630.4	(19/2,21/2) (15/2 ⁺) (19/2,21/2)	2165.8 2232.09 1242.79 2047.3	(19/2) (21/2 ⁺) (13/2 ⁻) (19/2 ⁻)			
646.34 <i>4</i>	3.0 5	646.34	(9/2)-	0.0	11/2-	M1,E2	0.0040 3	$\alpha(K)\exp<0.004$ $\alpha=0.0040 \ 3; \ \alpha(K)=0.0034 \ 3;$ $\alpha(L)=0.000430 \ 21;$ $\alpha(M)=8.4\times10^{-5} \ 4;$ $\alpha(N+)=1.71\times10^{-5} \ 10$ $\alpha(N)=1.58\times10^{-5} \ 8;$ $\alpha(O)=1.34\times10^{-6} \ 12$
650.5 9 688.0 3 715.52 4 732.04 11 803.2 9 821.89 11 871.4 2 952.8 3 974.7 8 979.1 5 1071.3 5	$\begin{array}{c} 0.9 \ 3 \\ 1.7 \ 2 \\ 46 \ 4 \\ 9.4 \ 10 \\ 3.2 \ 5 \\ 4.8 \ 5 \\ 6.2 \ 6 \\ 10.4 \ 10 \\ 1.7 \ 3 \\ 3.0 \ 4 \\ 5.7 \ 7 \end{array}$	2733.82 2733.82 1810.12 1826.67 2733.82 1916.45 3605.13 2047.3 3605.13 1625.32 2165.8	(15/2 ⁺) (19/2 ⁺) (19/2 ⁻) (19/2 ⁻) (19/2 ⁻) (19/2 ⁻) (19/2)	2083.5 2045.96 1094.60 1930.96 1094.60 2733.82 1094.60 2630.4 646.34 1094.60	(19/2)(15/2-)(15/2-)(23/2+)(15/2-)(15/2-)(19/2,21/2)(9/2)-(15/2-)			

Continued on next page (footnotes at end of table)

¹²⁷In β^- decay (1.04 s) 2004Ga24 (continued)

				2	$v(^{127}\text{Sn})$ (continued)
$E_{\gamma}^{\dagger\ddagger}$	$I_{\gamma}^{\ddagger \# b}$	E _i (level)	\mathbf{J}_i^π	E_f	${ m J}_f^\pi$
1094.7 2	100	1094.60	$(15/2^{-})$	0.0	11/2-
1217.4 10	1.1 4	2311.8	(19/2, 17/2)	1094.60	$(15/2^{-})$
1242.71 15	14.8 14	1242.79	$(13/2^{-})$	0.0	11/2-
1293.3 2	2.4 3	3605.13	$(19/2^{-})$	2311.8	(19/2,17/2)
1373.1 7	1.0 3	3605.13	$(19/2^{-})$	2232.09	$(21/2^+)$
1439.4 <i>3</i>	3.4 4	3605.13	$(19/2^{-})$	2165.8	(19/2)
1461.02 13	4.6 5	3287.67		1826.67	$(19/2^+)$
1521.8 5	2.3 2	3605.13	$(19/2^{-})$	2083.5	
1558.5 9	4.0 6	3605.13	$(19/2^{-})$	2047.3	$(19/2^{-})$
1689.0 <i>3</i>	1.6 2	3605.13	$(19/2^{-})$	1916.45	$(19/2^{-})$
1778.3 2	26.8 27	3605.13	$(19/2^{-})$	1826.67	$(19/2^+)$
1819.7 7	3.5 6	3647.22	(19/2, 21/2)	1826.67	$(19/2^+)$
2103.6 4	1.7 2	3605.13	$(19/2^{-})$	1501.5?	
2510.3 2	10.8 11	3605.13	$(19/2^{-})$	1094.60	$(15/2^{-})$
2766.3 8	0.5 2	3860.9		1094.60	$(15/2^{-})$
2804.9 11	0.8 2	3899.5		1094.60	$(15/2^{-})$

[†] From 2004Ga24.

[‡] For unplaced transitions that could belong to 3.67-s, 1.09-s, and/or 1.04-s, β^- decay, see 1.09-s β^- decay.

[#] From 2004Ga24. Relative to $I\gamma(1094.7\gamma)=100$.

[@] Theoretical conversion coefficients are calculated using BrIcc code for the multipolarity indicated.

[&] From *α*(K)exp (1980De35).

^{*a*} To obtain I_{γ} normalization, the multipolarities in brackets were assumed to calculate conversion coefficients. The assumed multipolarities are not used for spin and parity determinations (evaluator).

^b For absolute intensity per 100 decays, multiply by 0.85 5.

127 In β^- decay (1.04 s) 2004Ga24

Decay Scheme

¹²⁷In β^- decay (1.04 s) 2004Ga24

