Adopted Levels, Gammas

History									
Туре	Author	Citation	Literature Cutoff Date						
Full Evaluation	A. Hashizume	NDS 112, 1647 (2011)	1-Oct-2009						

 $Q(\beta^{-})=3228 \ 11; \ S(n)=5527 \ 15; \ S(p)=1.299\times 10^{4} \ 3; \ Q(\alpha)=-8482 \ 11 2012Wa38$

Note: Current evaluation has used the following Q record.

 $Q(\beta^{-})=3201\ 24;\ S(n)=5550\ 27;\ S(p)=12970\ 50;\ Q(\alpha)=-8610\ 50$ 2003Au03

Mass excess (Penning-Trap spectrometer): -83463 11 (2008Dw01).

Binding energy and two-neutron separation energy are calculated by HFB (Hartree-Fock-Bogoliubov) with effective interactions. (2008Ma17).

Assignment: ²³⁵U(n,F) E=th, on-line mass separation.

Nuclear structure calculations on the levels and their properties: 2009Sa31, 2007Ji14, 2000Yo08, 1998Ho11, 1996An11, 1992In02, 1985Ha17, 1979Mi14.

¹²⁷Sn Levels

Cross Reference (XREF) Flags

A	127 In β^{-} decay (1.09 s)	D	127 Sn IT decay (4.52 μ s)
В	127 In β^{-} decay (3.67 s)	Е	${}^{9}\text{Be}({}^{238}\text{U},\text{X}\gamma)$
C	127 In β^{-} decay (1.04 s)		

E(level) [†]	J ^{π#@} &a	T _{1/2} ‡	XREF	Comments
0.0	11/2-	2.10 h 4	ABCDE	$%β^{-}=100$ μ=-1.329 7 μ: laser spectroscopy (2004Le13,2005Le34). Configuration=(ν h _{11/2}). J ^π : log f ^{lu} t=9.45 to 7/2 ⁺ , syst of 11/2 ⁻ states in odd-Sn isotopes. The result of theoretical calculation of μ=-1.225 (2005Le34) confirms the h _{11/2} assignment. T _{1/2} : weighted av of 2.05 h 5 (1956Ca32), 2.15 h <i>10</i> (1962Dr01), 2.2 h 2 (1962Ha16), 2.10 h 5 (1962Uh01), 2.22 h <i>15</i> (1963La15), 2.45 h 30 (1963Ma20). Other: 1.5 h (1951Ba41).
5.07 6	3/2+	4.13 min <i>3</i>	AB	%β ⁻ =100 μ=+0.757 4; Q=+0.30 13 μ,Q: laser spectroscopy (2004Le13,2005Le34). Configuration=(ν d _{3/2}). J ^π : log ft=5.6 to 5/2 ⁺ , syst of 3/2 ⁺ states in odd-Sn isotopes. The result of theoretical calculation of μ=+0.831 (2005Le34) confirms the d _{3/2} assignment. T _{1/2} : from (1974Gr29). Others: ≈2.5 min (1962Dr01), 4.6 min 4 (1962Ha16), 4.1 min 8 (1963Tr10), 4.4 min 5 (1965Ka08), 4.0 min 3 (1965Ka08), 4.4 min 1 (19700s77), 3.5 min 5 (1971μ06)
257.76 8	$(1/2)^+$		AB	Configuration=(γ s _{1/2}). I^{π} · M1 γ to 3/2 ⁺ .
646.31 <i>4</i>	(9/2)-		ABCD	Configuration= $(^{128}$ Sn 2 ⁺)(ν (h _{11/2}) ⁻¹). I^{π} . M1 E2 ν to 11/2 ⁻ systematics of odd-Sn isotopes favors 9/2 ⁻
809.94 6	$(5/2^+)$		AB	J^{π} : In ¹²⁷ In(1.09 s, 9/2 ⁺) decay, 11 levels assigned (7/2 or 9/2) make γ transitions to this level, and this level goes to 3/2 ⁺ level by γ .
953.95 9	(1/2,3/2)		AB	Configuration= $(^{128}\text{Sn } 2^+)(\nu (d_{3/2})^{-1})$ and/or $(^{128}\text{Sn } 2^+)(\nu (s_{1/2})^{-1})$. $I^{\pi}: \log ft=7.0 \text{ from } (1/2^-), \gamma \text{ to } (1/2^+) \text{ and } (5/2^+).$
963.61 6	$(7/2^{-})$		AB	Configuration= $(^{128}$ Sn 2 ⁺)(ν (h _{11/2}) ⁻¹). J ^{π} : ν to 11/2 ⁻ and (9/2 ⁻), systematics in odd-Sn isotopes favors 7/2 ⁻ .
1053.62 6	$(7/2^+)$		A	Configuration= $(^{128} \text{Sn } 2^+)(\nu \ d_{3/2})^{-1}$). J^{π} : log ft =5.8 from (9/2 ⁺), ν to 3/2 ⁺ .
1090.61 12	(1/2,3/2)		В	Configuration= $(^{128}\text{Sn } 2^+)(\nu (d_{3/2})^{-1})$ and/or $(^{128}\text{Sn } 2^+)(\nu (s_{1/2})^{-1})$. J ^{π} : log ft=6.5 from (1/2 ⁻).

Continued on next page (footnotes at end of table)

Adopted Levels, Gammas (continued)

¹²⁷Sn Levels (continued)

E(level) [†]	$J^{\pi \# @\&a}$	$T_{1/2}$	XREF	Comments
1094.61 15	(15/2 ⁻)		CDE	Configuration= $(^{128}\text{Sn } 2^+)(\nu (h_{11/2})^{-1}).$
1233.41 24	(3/2 ⁺)		AB	Configuration= $(^{128}\text{Sn } 2^+)(\nu \ (d_{3/2})^{-1})$ and/or $(^{128}\text{Sn } 2^+)(\nu \ (s_{1/2})^{-1})$.
1242.79 <i>13</i>	(13/2 ⁻)		CDE	J^{π} : γ from (15/2 ⁺), γ to (11/2 ⁻): from systematics of Sn isotopes (2000Pi03). Though 2004Ga24 have also proposed that this level is 13/2 ⁻ , the β -ray feeding intensity obtained from in and out γ -ray balance (log <i>ft</i> =6.4 from (21/2 ⁻)) contradict this assignment. 2004Ga24 suggest this contradiction is due to unobserved γ -rays. Configuration=(128Sn 2 ⁺)(γ (hump) ⁻¹)
1331.55 11	(5/2+)		AB	Configuration=($\sqrt{-5}$ d ₂). $I^{a_1} \times t_0$ (1/2 ⁺) and to 3/2 ⁺ , systematics of odd Sn isotopes
1501.5? 4			С	The order of feeding 2103.8 γ and 406.9 γ is not known, and so this level may actually be at 3198.3.
1555.91 6 1602.65 6	(7/2 ⁻ ,9/2 ⁺) (7/2 ⁺)		A A	J^{π} : log ft =6.5 from (9/2 ⁺), γ to 11/2 ⁻ . Configuration=($\gamma g_{7/2}$). J^{π} : log ft =4.4 from (9/2 ⁺), γ to 3/2 ⁺ .
1618.40 <i>16</i> 1625.32 <i>19</i>	(7/2,9/2 ⁺)		A CD	J^{π} : log <i>ft</i> =5.9 from (9/2 ⁺), γ to (5/2 ⁺) and 11/2 ⁻ . J^{π} : log <i>ft</i> =6.9 from (21/2 ⁻), γ to (9/2 ⁺): In view of the difference of large Q value (6510) and maximum energy of level proposed (3899.5) in the T _{1/2} = 1.04 s β -decay, it is likely that the decay scheme is not yet complete. Only one γ feeding to this level from decay process of the 4.52 μ s isomer is reported. The discrepancy between the log <i>ft</i> and possible multipolarity of decaying γ could be attributed to not yet reported feeding γ 's to this level (evaluator).
1702.59 7 1810.13 <i>15</i>	$(7/2^+)$ $(15/2^+)$ (1/2,2/2)		A CDE	J^{π} : log <i>ft</i> =6.0 from (9/2 ⁺), γ to 3/2 ⁺ . J^{π} : γ to (13/2 ⁺) and to (15/2 ⁺).
1819.9 5 1826.67 <i>16</i>	(1/2, 5/2) $(19/2^+)$	4.52 μs 15	CDE	J [*] : $\log \pi = 8.0$ from (1/2), γ to 3/2 . Configuration=($\nu (d_{3/2})^{-1}$)($\nu (h_{11/2})^{-2}$) (2008Lo07). J ^π : from systematics of odd Sn isotopes (2000Pi03), γ to (15/2 ⁺). T _{1/2} : weighted average of 4.4 μ s 2 (2008Lo07), 4.8 μ s 3 (2004Ga24) and 4.5 μ s 3 (2000Pi03): other: 3 1 μ s 9 (1980De35)
1909.54 7 1916.45 <i>1</i> 8 1930.97 <i>1</i> 7	(7/2 ⁺) (19/2 ⁻) (23/2 ⁺)	1.19 μs <i>13</i>	A C C E	J^{π} : log ft =5.6 from (9/2 ⁺), γ to 3/2 ⁺ . J^{π} : log ft =6.6 from (21/2 ⁻), γ to (15/2 ⁻). Configuration=(ν (d _{3/2}) ⁻¹)(ν (h _{11/2}) ⁻²) (2008Lo07). J^{π} : (E2) γ to (19/2 ⁺), from systematics of odd Sn isotopes. T _{1/2} : weighted average of 0.9 μ s 3 (2008Lo07) and 1.26 μ s 15 (2004Ga24).
2024.21 8 2042.52 <i>11</i> 2045.98 <i>20</i> 2047.4 <i>3</i> 2083.5 <i>4</i>	(7/2 ⁺) (7/2 ⁺) (19/2) (19/2 ⁻)		A A C C E C	$J_{7}^{\pi}: \log ft = 5.6 \text{ from } (9/2^+), \gamma \text{ to } (3/2^+).$ $J^{\pi}: \log ft = 6.1 \text{ from } (9/2^+), \gamma \text{ to } (3/2^+).$ $J^{\pi}: \log ft = 6.6 \text{ from } (21/2^-), \gamma' \text{ so } (15/2^+) \text{ and to } (19/2^+).$ $J^{\pi}: \gamma \text{ from } (23/2^-), \gamma \text{ to } (15/2^-).$
2165.8 <i>3</i> 2232.10 <i>20</i>	(19/2) (21/2 ⁺)		C C E	J^{π} : log <i>ft</i> =6.7 from (21/2 ⁻), γ to (15/2 ⁻). (2004Ga24) reported as (19/2). J^{π} : log <i>ft</i> =6.2 from (21/2 ⁻), γ to (19/2 ⁺), γ to (23/2 ⁺), from systematics of odd Sn isotopes
2260.3 9 2311.8 3 2410.4 9	(1/2,3/2) (19/2,17/2) (23/2 ⁻)		B C E	J^{π} : log <i>ft</i> =7.0 from (1/2 ⁻), γ to (1/2 ⁺). γ from (19/2 ⁻), γ to (15/2 ⁻) and (19/2). J^{π} : members of configuration=(ν (h _{11/2}) ⁻³) quasiparticle multiplet from shell model calculation (2008Lo07).
2442.69 <i>10</i> 2464.79 <i>10</i> 2515.25 <i>15</i> 2552.4 <i>10</i>	(7/2,9/2) (7/2,9/2) (7/2,9/2) (27/2 ⁻)	0.25 µs 3	A A A E	J^{π} : log ft =5.9 from (9/2 ⁺), γ to (7/2 ⁺). J^{π} : log ft =6.0 from (9/2 ⁺), γ to (5/2 ⁺) and 11/2 ⁺ . J^{π} : log ft =6.4 from (9/2 ⁺), γ to (5/2 ⁺) and 11/2 ⁺ . $T_{1/2}$: From (2008Lo07). J^{π} : member of configuration=(ν (h _{11/2}) ⁻³) quasiparticle multiplet from shell model calculation (2008L o07).
2630.5 4	(19/2,21/2)		С	J^{π} : log <i>ft</i> =6.6 from (21/2 ⁻), γ to (19/2).

Continued on next page (footnotes at end of table)

Adopted Levels, Gammas (continued)

¹²⁷Sn Levels (continued)

E(level) [†]	J ^π #@&a	XREF		Comments
2733.82 24		С		
2791.38 15	(7/2, 9/2)	Α	J^{π} : log ft=6.1 from (9/2 ⁺), γ to (5/2 ⁺).	
2822.3 <i>3</i>	(7/2, 9/2)	Α	J^{π} : log ft=6.8 from (9/2 ⁺), γ to (5/2 ⁺).	
2886.3 6	(1/2, 3/2)	В	J^{π} : log ft=7.0 from (1/2 ⁻), γ to (1/2 ⁺).	
3287.67 21		С		
3333.38 11	(3/2)	В	J^{π} : log ft=5.4 from (1/2 ⁻), γ to (7/2 ⁺).	
3397.60 22	(1/2, 3/2)	В	J^{π} : log ft=6.0 from (1/2 ⁻), γ to (1/2 ⁺).	
3564.5 4	(3/2)	В	J^{π} : log ft=6.7 from (1/2 ⁻), γ to (1/2 ⁺).	
3605.12 19	$(19/2^{-})$	С	Configuration= $(\nu h_{11/2}^{-1} d_{2/2}^{-1})_{7-}$ $(\nu g_{7/2})^{-1}$.	
			J^{π} : log ft=4.5 from $(21/2^2)$, γ to $(15/2^-)$.	
3647.22 24	(19/2, 21/2)	С	J^{π} : log ft=5.4 from (21/2 ⁻), γ to (19/2 ⁺).	
3860.9 9		С		
3899.5 11		С		

[†] From a least-squares fit to the adopted $E(\gamma's)$ (evaluator).

¹ γ (t) from ¹²⁷Sn produced by ⁹Be(²³⁸U,F) and ⁹Be(¹³⁶Xe,X) (2008Lo07); γ (t) from ¹²⁷Sn produced by ²³³U(n,F) and ²³⁹Pu(n,F) (2000Pi03)); from $\beta\gamma$ (t) delayed coincidence (2004Ga24): for all excited states, except the 5.07 level.

[#] 1998Ho11 reported shell model calculation on Sn isotopes using effective interaction under model space which includes $2s_{1/2}$ $1d_{3/2}$, $1d_{5/2}$, $0g_{7/2}$, $0h_{11/2}$ neutron hole orbitals. The results on level energies and J^{π} in ¹²⁷Sn agree relatively well up to 1.5 MeV. However, first $3/2^+$ and second $5/2^+$ have lower energies and first $7/2^+$ has higher energies, reversing level order. 2000Yo08 calculated level energies and J^{π} using IBFM (interacting boson fermion model). The predictions and experimental results are relatively well reproduced up to 1300 keV,

^(a) 2004Ga24 have proposed a model where the neutron in $s_{1/2}$ or $d_{3/2}$ orbitals couples to the 2⁺ state in ¹²⁸Sn according to the systematics in even and odd Sn nuclei. The energies of 2⁺ states in even Sn nuclei are calculated by 2000Yo08 using IBFM, 2000Zh19 by BOSM(nucleon pair shell model), 2004Ts03 by QPPM (quasiparticle phonon model), 2002Te10 by QPRHA (quasiparticle random phase approximation).

& Dominant configurations of levels in ¹²⁸Sn are following: 1st 2⁺: ν (h_{11/2})⁻² (2004Ga24) 1st 5⁻: ν ((h_{11/2})⁻¹ \otimes (s_{1/2})) (2008Jo03), (1974Kr15) 1st 7⁻: ν ((h_{11/2})⁻¹ \otimes (d_{3/2})) (2008Jo03), (1974Kr15).

^a The configurations shown in each level are most dominant one proposed from one of above authors.

Adopted Levels, Gammas (continued) $\underline{\gamma(^{127}Sn)}$										
257.76	(1/2)+	252.70 4	100.0	5.07	3/2+	M1	0.0446	$\alpha(K)=0.0387 \ 6; \ \alpha(L)=0.00482 \ 7; \ \alpha(M)=0.000944 \ 14; \\ \alpha(N+)=0.000193 \ 3 \\ \alpha(N)=0.0001776 \ 25; \ \alpha(O)=1.549\times10^{-5} \ 22 \\ \alpha(D)=0.0001776 \ 25; \ \alpha(D)=0.000176 \ 25$		
646.31	(9/2) ⁻	646.34 <i>4</i>	100.0	0.0	11/2-	M1,E2	0.0040 <i>3</i>	Mult.: from 3.67-s decay. $\alpha(K)\exp<0.004$ $\alpha=0.0040 \ 3; \ \alpha(K)=0.0034 \ 3; \ \alpha(L)=0.000430 \ 21; \ \alpha(M)=8.4\times10^{-5} \ 4$ $\alpha(N+)=1.71\times10^{-5} \ 10$ $\alpha(N)=1.58\times10^{-5} \ 8; \ \alpha(O)=1.34\times10^{-6} \ 12$		
809.94 953.95	$(5/2^+)$ (1/2,3/2)	805.00 <i>5</i> 144.02 <i>16</i> 696.4 <i>3</i> 948.90 <i>17</i>	100.0 13 <i>3</i> 27 <i>4</i> 100 <i>10</i>	5.07 809.94 257.76 5.07	$3/2^+$ (5/2 ⁺) (1/2) ⁺ $3/2^+$					
963.61	(7/2 ⁻)	317.61 <i>16</i> 963.61 <i>12</i>	3.5 <i>4</i> 100 <i>11</i>	646.31 0.0	$(9/2)^{-}$ $11/2^{-}$					
1053.62	(7/2 ⁺)	243.75 4	7.1 8	809.94	$(5/2^+)$	M1,E2	0.060 11	α (K)exp=0.043 <i>17</i> (1980De35) α (K)=0.051 <i>9</i> ; α (L)=0.0075 <i>23</i> ; α (M)=0.0015 <i>5</i> ; α (N+)=0.00029 α (N)=0.00027 <i>8</i> ; α (O)=2.0×10 ⁻⁵ <i>4</i>		
		1048.54 <i>3</i>	100 10	5.07	$3/2^{+}$					
1090.61	(1/2,3/2)	832.83 [‡] 15	80 8	257.76	$(1/2)^+$					
		1085.62 [‡] 18	100 9	5.07	$3/2^{+}$					
1094.61	$(15/2^{-})$	1094.7 [#] 2	100.0	0.0	$11/2^{-}$					
1233.41	(3/2 ⁺)	975.8 <i>4</i> 1228.4 <i>3</i>	$1.0 \times 10^2 \ 3$ $9. \times 10^1 \ 3$	257.76 5.07	$(1/2)^+$ $3/2^+$					
1242.79 1331.55	(13/2 ⁻) (5/2 ⁺)	1242.71 [#] 15 1073.8 8 1326.47 9	100.0 5.0 <i>15</i> 100 <i>10</i>	0.0 257.76 5.07	11/2 ⁻ (1/2) ⁺ 3/2 ⁺					
1501.5? 1555.91	(7/2 ⁻ ,9/2 ⁺)	406.9 [#] 7 502.6 5	100.0 7.6 9	1094.61 1053.62	$(15/2^{-})$ $(7/2^{+})$					
		592.1 4 746.07 8 909.67 8	10.5 <i>17</i> 51 5 30 <i>3</i>	963.61 809.94 646.31	(1/2) $(5/2^+)$ $(9/2)^-$ $11/2^-$					
1602.65	(7/2+)	549.14 <i>12</i> 639.07 <i>4</i> 792.76 <i>5</i> 956.32 <i>9</i> 1597.43 <i>6</i>	0.50 5 6.0 6 3.7 4 10.1 10 100.0	0.0 1053.62 963.61 809.94 646.31 5.07	$(7/2^+) (7/2^-) (5/2^+) (9/2)^- 3/2^+$					
1618.40	(7/2,9/2+)	1602.6 5 565.3 10 808.8 4 972.5 6	0.50 20 17 5 100 12 7.8 22	0.0 1053.62 809.94 646.31	$ \begin{array}{c} 11/2^{-} \\ (7/2^{+}) \\ (5/2^{+}) \\ (9/2)^{-} \end{array} $					

 $^{127}_{50}\mathrm{Sn}_{77}$ -4

				<u>1)</u>				
E _i (level)	\mathbf{J}_i^{π}	${\rm E_{\gamma}}^{\dagger}$	I_{γ}^{\dagger}	E_f	J_f^π	Mult. ^{&}	α^{a}	Comments
1618.40	$(7/2, 9/2^+)$	1618.7 <i>3</i>	47 4	0.0	11/2-			
1625.32		979.1 [#] 5	100.0	646.31	(9/2)-			
1702.59	(7/2 ⁺)	649.1 <i>5</i> 748.9 <i>3</i> 892.65 <i>4</i> 1697.3 <i>2</i>	17 3 12.0 16 100 10 31 4	1053.62 953.95 809.94 5.07	$(7/2^+)$ (1/2,3/2) $(5/2^+)$ $3/2^+$			
1810.13	$(15/2^+)$	184.81 [#] <i>13</i>	3.6 5	1625.32				
		567.26 [#] 15 715.52 [#] 4	22.6 <i>22</i> 100 <i>9</i>	1242.79 1094.61	(13/2 ⁻) (15/2 ⁻)			
1819.9	(1/2, 3/2)	1814.8 <i>3</i>	100.0	5.07	3/2+			
1826.67	(19/2+)	16.52 [#] 11	0.277 22	1810.13	(15/2+)	E2	2.32×10 ³ 9	B(E2)(W.u.)=1.00 <i>10</i> α (L)=1.87×10 ³ 7; α (M)=384 <i>15</i> ; α (N+)=67.3 <i>25</i> α (N)=65.9 <i>25</i> ; α (O)=1.36 <i>5</i> I _y : Intensity is estimated from transition intensity balance of 4.52 μ s isomer by evaluator.
1909.54	(7/2+)	732.04 [#] 11 353.63 9 577.9 5 855.94 4 945.9 2 1099.6 2 1262.8 5 1904.1 2	100 11 53 6 18.6 21 100 11 34 5 50 6 3.6 11 23.7 21	1094.61 1555.91 1331.55 1053.62 963.61 809.94 646.31 5.07	$\begin{array}{c} (15/2^{-}) \\ (7/2^{-},9/2^{+}) \\ (5/2^{+}) \\ (7/2^{+}) \\ (7/2^{-}) \\ (5/2^{+}) \\ (9/2)^{-} \\ 3/2^{+} \end{array}$			
1916.45	$(19/2^{-})$	821.89 [#] 11	100.0	1094.61	$(15/2^{-})$			
1930.97	(23/2 ⁺)	104.30 [#] 6	100.00	1826.67	(19/2 ⁺)	(E2)	1.374	$\alpha(K)=1.008\ 15;\ \alpha(L)=0.294\ 5;\ \alpha(M)=0.0600\ 9;\ \alpha(N+)=0.01110\ 16\ \alpha(N)=0.01063\ 16;\ \alpha(O)=0.000474\ 7\ \delta:\ B(E2)(W.u.)=1.4\ 5,\ if\ M1,\ hindrance\ factor\ is\ very\ large\ (B(M1)(W.u.)=2.2\times10^5).$
2024.21	(7/2 ⁺)	321.7 4 421.56 8 468.3 2 970.5 2 1070.54 10 1214.04 9	4.4 5 6.6 8 100 <i>11</i> 20.1 22 38 6 79 8	1702.59 1602.65 1555.91 1053.62 953.95 809.94	$(7/2^+) (7/2^+) (7/2^-,9/2^+) (7/2^+) (1/2,3/2) (5/2^+)$			
2042.52	(7/2 ⁺)	424.4 2 487.2 3 809.7 6 989.4 2 1088.34 9	100 <i>10</i> 38 5 22 7 63 7 43 9	1618.40 1555.91 1233.41 1053.62 953.95	$(7/2,9/2^+)$ $(7/2^-,9/2^+)$ $(3/2^+)$ $(7/2^+)$ (1/2,3/2)			
2045.98	(19/2)	219.2 [#] 2	100 13	1826.67	$(19/2^+)$			

S

L

	Adopted Levels, Gammas (continued)										
						$\gamma(^{127}\text{Sn})$ (co	ontinued)				
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	$\mathrm{I}_{\gamma}^{\dagger}$	\mathbf{E}_{f}	\mathbf{J}_f^π	Mult. ^{&}	α^{a}	Comments			
2045.98	(19/2)	236.0 [#] 2	48 9	1810.13	$(15/2^+)$						
2047.4	$(19/2^{-})$	952.8 [#] 3	100.0	1094.61	$(15/2^{-})$						
2083.5		257.3 [#] 7	100.00	1826.67	$(19/2^+)$						
2165.8	(19/2)	1071.3 [#] 5	100.00	1094.61	$(15/2^{-})$						
2232 10	$(21/2^+)$	$301 \ 14^{\#} \ 13$	77 10	1930 97	$(23/2^+)$						
2252.10	(21/2)	$405 4^{\#} 3$	100 14	1826.67	$(23/2^{+})$ $(10/2^{+})$						
2260.2	(1/2) (2/2)	$1160.7^{\ddagger}0$	100 14	1020.07	(19/2)						
2200.5	(1/2, 3/2) (10/2, 17/2)	$205.6^{\#}.7$	100.0	1090.01	(1/2, 3/2) $(10/2^{-})$						
2311.8	(19/2,17/2)	393.0^{-4}	1.0×10 ⁻ 3	1910.43	(19/2)						
2410.4	$(23/2^{-})$	1217.4" 10	8.×10 ² 3	2047.4	(15/2) $(10/2^{-})$	$(\mathbf{F2})$	0.0102	$\alpha(K) = 0.01631.24; \alpha(I) = 0.00237.4; \alpha(M) = 0.000460.7;$			
2410.4	(23/2)	303.1 3	20 4	2047.4	(19/2)	(E2)	0.0192	$\alpha(\mathbf{K}) = 0.01051\ 24,\ \alpha(\mathbf{L}) = 0.00257\ 4,\ \alpha(\mathbf{M}) = 0.000409\ 7,$ $\alpha(\mathbf{N}_{\perp}) = 0.29 \times 10^{-5}\ 14$			
								$\alpha(N) = 8.65 \times 10^{-5}$ 13: $\alpha(O) = 6.41 \times 10^{-6}$ 10			
		479.7 3	100 11	1930.97	$(23/2^+)$	(E1)	0.00263 4	$\alpha = 0.00263 4$; $\alpha(K) = 0.00229 4$; $\alpha(L) = 0.000274 4$:			
					(()		$\alpha(M) = 5.34 \times 10^{-5} 8; \alpha(N+) = 1.086 \times 10^{-5} 16$			
								$\alpha(N) = 1.002 \times 10^{-5} I_{5}; \alpha(O) = 8.48 \times 10^{-7} I_{2}$			
2442.69	(7/2,9/2)	740.0 8	0.9 6	1702.59	$(7/2^+)$						
		840.4 8	10.3 15	1602.65	$(7/2^+)$						
		1111.0 6	83	1331.55	$(5/2^+)$						
		1589.07 8	30.5	809.94	$(1/2^+)$ $(5/2^+)$						
		1796.2 6	4.2 17	646.31	$(9/2)^{-}$						
2464.79	(7/2,9/2)	1133.2 7	4.8 17	1331.55	$(5/2^+)$						
		1411.3 2	15 5	1053.62	$(7/2^+)$						
		1818.6 4	11 4	646.31	$(9/2)^{-}$						
2515.25	(7/2.0/2)	2464.70 12	100 11	0.0	$11/2^{-}$						
2515.25	(7/2,9/2)	1184.0 9	63 167	1331.55	$(5/2^+)$ $(5/2^+)$						
		2515.2.2	100.9	0.0	$(3/2^{-})$ $11/2^{-}$						
2552.4	$(27/2^{-})$	$142.0^{@}3$	100.0	2410.4	$(23/2^{-})$	(E2)	0 461 8	$\alpha(K) = 0.361.6; \alpha(L) = 0.0805.14; \alpha(M) = 0.0163.3; \alpha(N+) = 0.00307$			
2352.1	(27/2)	112.0 5	100.0	2110.1	(25/2)	(112)	0.101 0	5			
								$\alpha(N)=0.00291$ 5; $\alpha(O)=0.0001541$ 25			
2630.5	(19/2,21/2)	464.6 [#] 4	65 13	2165.8	(19/2)						
		583.2 [#] 5	100 12	2047.4	$(19/2^{-})$						
2733.82		501.9 [#] 10	16 7	2232.10	$(21/2^+)$						
		650.5 [#] 9	28 10	2083.5	(,-)						
		$688.0^{\#}$ 3	53 7	2045.98	(19/2)						
		803.2 [#] 9	100 16	1930 97	(12/2) $(23/2^+)$						
2791.38	(7/2, 9/2)	1737.8 3	25 7	1053.62	$(7/2^+)$						
	× 1 - 1 - 1 - 7	1827.5 6	4.7 23	963.61	$(7/2^{-})$						

6

From ENSDF

 $^{127}_{50}{
m Sn}_{77}$ -6

 $^{127}_{50}{
m Sn}_{77}{
m -6}$

L

Adopted Levels,	Gammas	(continued)
-----------------	--------	-------------

$\gamma(^{127}\text{Sn})$ (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	J_f^π	E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	J_f^π
2791.38	(7/2,9/2)	1981.40 <i>17</i>	100 11	809.94	$(5/2^+)$	3605.12	(19/2 ⁻)	871.4 [#] 2	23.1 23	2733.82	
		2145.2 4	9.8 18	646.31	(9/2)-			974.7 <mark>#</mark> 8	6.3 12	2630.5	(19/2,21/2)
2822.3	(7/2,9/2)	1768.8 <i>3</i>	6.×10 ¹ 3	1053.62	$(7/2^+)$			1293.3 [#] 2	9.0 12	2311.8	(19/2,17/2)
		1858.4 6	38 12	963.61	$(7/2^{-})$			1373.1 ^{#} 7	3.7 12	2232.10	$(21/2^+)$
		2175.7 7	100 16	646.31	(9/2)-			1439.4 [#] 3	12.7 15	2165.8	(19/2)
2886.3	(1/2,3/2)	2628.5 [‡] 5	100.00	257.76	$(1/2)^+$			1521.8 [#] 5	8.6 8	2083.5	
3287.67		1461.02 [#] 13	100.00	1826.67	$(19/2^+)$			1558.5 [#] 9	14.9 23	2045.98	(19/2)
3333.38	(3/2)	1513.0 [‡] 9	4.5 10	1819.9	(1/2,3/2)			1689.0 [#] 3	6.0 8	1916.45	$(19/2^{-})$
		2001.9 [‡] 7	5.9 7	1331.55	$(5/2^+)$			1778.3 [#] 2	100 10	1826.67	$(19/2^+)$
		2242.8 [‡] 2	10.0 12	1090.61	(1/2,3/2)			2103.6 [#] 4	6.3 8	1501.5?	
		2369.5 [‡] 3	9.9 12	963.61	$(7/2^{-})$			2510.3 [#] 2	40 5	1094.61	$(15/2^{-})$
		3075.62 [‡] 10	100 11	257.76	$(1/2)^+$	3647.22	(19/2,21/2)	359.58 [#] 13	100 12	3287.67	
		3328.20 [‡] 19	37 5	5.07	$3/2^{+}$			1819.7 [#] 7	100 18	1826.67	$(19/2^+)$
3397.60	(1/2,3/2)	3139.8 [‡] 2	100.0	257.76	$(1/2)^+$	3860.9		2766.3 [#] 8	100.0	1094.61	$(15/2^{-})$
3564.5	(3/2)	3306.7 [‡] 4	100.00	257.76	$(1/2)^+$	3899.5		2804.9 [#] 11	100.0	1094.61	$(15/2^{-})$

 \neg

[†] From ¹²⁷In β⁻ decay (1.09 s), except as noted. [‡] From ¹²⁷In β⁻ decay (3.67 s). [#] From ¹²⁷In β⁻ decay (1.04 s). [@] From ⁹Be(²³⁸U,X).

[&] From electron conversion coefficients in ¹²⁷In β^- decay (3.67 s) or ¹²⁷In β^- decay (1.09 s).

^{*a*} Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

Adopted Levels, Gammas

Level Scheme

Intensities: Relative photon branching from each level

 $^{127}_{50}$ Sn₇₇

Legend

Adopted Levels, Gammas

Level Scheme (continued)

 $^{127}_{50}{
m Sn}_{77}$

9

 $^{127}_{50}{
m Sn}_{77}$