127 Sn IT decay (4.52 μ s) 2000Pi03,2004Ga24

History							
Туре	Author	Citation	Literature Cutoff Date				
Full Evaluation	A. Hashizume	NDS 112, 1647 (2011)	1-Oct-2009				

Parent: ¹²⁷Sn: E=1826.67 16; $J^{\pi}=(19/2^+)$; $T_{1/2}=4.52 \ \mu s$ 15; %IT decay=100.0

2004Ga24: ²³⁵U(n,F) E=th, on-line mass separation; γ , β , $\gamma\gamma$ coin, $\beta\gamma$ coin.

2000Pi03: 233 U(n,F), 239 Pu(n,F), E=th, on-line mass separation; γ , ce, $\gamma\gamma$ coin, γ -ce coin, ce-ce coin.

An unknown excited state with half-life of 3.1 μ s 9 has been proposed by 1980De35 from $\beta\gamma$ (t) results for 715 γ and 1094 γ , which have equal delayed intensities.

The decay scheme is proposed at first by 2000Pi03. The detail of decay scheme including the 16.52 keV isomeric transition and 5 other γ -rays is reported by 2004Ga24.

127 Sn Levels

E(level) [†]	Jπ‡	T _{1/2} #	Comments			
0.0	11/2-					
646.34 <i>4</i>	(9/2)					
1094.60 15	$(15/2^{-})$					
1242.79 <i>13</i>	$(13/2^{-})$					
1625.32 19						
1810.12 15	$(15/2^+)$		No β feeding to this level was assumed.			
1826.64 16	(19/2 ⁺)	4.52 μs 15	T _{1/2} : weighted average of 4.4 μ s 2 (2008Lo07), 4.8 μ s 3 (2004Ga24) and 4.5 μ s 3 (2000Pi03); other: 3.1 μ s 9 (1980De35).			

[†] From adopted level.

[±] Spin and parity were estimated by analogy to ¹²³Sn isomer. [#] γ (t) from ¹²⁷Sn produced by ⁹Be(²³⁸U,F) and ⁹Be(¹³⁶Xe,X) (2008Lo07); γ (t) from ¹²⁷Sn produced by by ²³³U(n,F) and ²³⁹Pu(n,F) (2000Pi03)); from $\beta\gamma$ (t) delayed coincidence (2004Ga24): for the 4.52 μ s isomer.

$\gamma(^{127}\text{Sn})$

Iv normalization: From $I(\gamma+ce)(732.04\gamma+184.81\gamma+567.26\gamma+715.52\gamma) - I(\gamma+ce)(236.0\gamma)=100$. The 236.0 γ is the transition to the 1810.13 state from the 2045.98 state in 1.04 s β decay. All I_Y from 2004Ga24 in 1.04 s β decay.

The cascade 184.8-979.1-646.34 γ 's were not reported by 2000Pi03.

$E_{\gamma}^{\dagger @}$	I_{γ} [‡] &	E _i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult.	α #	Comments
16.52 11	0.0245 16	1826.64	(19/2+)	1810.12 (15/2+)	E2	2.32×10 ³ 9	$\alpha(L)=1.87\times10^3$ 7; $\alpha(M)=384$ 15; $\alpha(N+)=67.3$ 25 $\alpha(N)=65.9$ 25; $\alpha(O)=1.36$ 5 Mult.: From systematic of 19/2 ⁺ Sn isomers. In ¹²⁹ Sn, the ratio of the K-x-ray intensity over L-electron intensity of isomeric transition is 0.7(2), compatible only with an E2 transition(2000Pi03). B(E2)=34 4 (2000Pi03).
184.81 <i>13</i>	1.62 <i>19</i>	1810.12	(15/2 ⁺)	1625.32	[M1]	0.1027	$\alpha(K)=0.0889 \ I3; \ \alpha(L)=0.01118 \ I6; \ \alpha(M)=0.00219 \ 3; \ \alpha(N+)=0.000448 \ 7 \ \alpha(N)=0.000412 \ 6; \ \alpha(O)=3.58\times10^{-5} \ 5 \ Mult.: M1 \ was assumed for transition intensity calculation, not used for J estimate.$

5111 uccay (4.52 µs) 20001 105,2004 (324 (Continueu)							
$\gamma(^{127}\text{Sn})$ (continued)							
$E_{\gamma}^{\dagger @}$	Ι _γ ‡ &	E_i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}	Mult.	Comments
567.26 15	10.2 10	1810.12	$(15/2^+)$	1242.79	$(13/2^{-})$		
646.34 <i>4</i>	1.8 2	646.34	(9/2)-	0.0	11/2-	D,E2	I_{γ} : from the intensity balance of 184.8 γ and 979.1 γ (evaluator).
715.52 4	45 4	1810.12	(15/2+)	1094.60	(15/2-)		I_{γ} : From 1.04s ¹²⁷ In decay (2000Pi03) for the 184.81, 567.26 and 715.52 γ .
732.04 11	9.4 7	1826.64	$(19/2^+)$	1094.60	$(15/2^{-})$		
979.1 5	1.8 2	1625.32		646.34	$(9/2)^{-}$		I_{γ} : from the intensity balance of 184.81 γ (evaluator).
1094.7 2	54 4	1094.60	(15/2 ⁻)	0.0	11/2-		I_{γ} : from the intensity balance of 715.52 γ and 732.04 γ (evaluator).
1242.71 15	10.2 10	1242.79	$(13/2^{-})$	0.0	$11/2^{-}$		I_{γ} : from the intensity balance of 567.26 γ (evaluator).

¹²⁷Sn IT decay (4.52 µs) 2000Pi03 2004Ga24 (continued)

[†] Proposed by (2004Ga24).
[‡] From 1.04 s ¹²⁷In decay (2004Ga24), unless otherwise noted.
[#] Theoretical conversion coefficients are calculated using BrIcc code for the multipolarity indicated.
[@] Isomeric transition from the 1818(19/2⁺) level to the 1810(15/2⁺) level is not directly measured.

& For absolute intensity per 100 decays, multiply by 1.51 10.

