(HI,xnγ) **2005Po03**

History									
Туре	Author	Citation	Literature Cutoff Date						
Full Evaluation	A. Hashizume	NDS 112, 1647 (2011)	1-Oct-2009						

²³⁸U(¹²C,FX γ) E=90 MeV, EUROBALL III Ge array ²⁰⁸Pb(¹⁸O,FX γ) E=85 MeV, ¹⁷⁶Yb(³¹P,FX γ) E=145 MeV, EUROBALL IV Ge array, Measured E γ , I γ , $\gamma\gamma$, fission fragments- γ (t).

The level scheme is that given by authors.

¹²⁷Sb Levels

E(C), J(C) Band built on the 2486-keV level, but spin (J₀) and parity of the base level have not been established. The absolute value of ΔJ is 1 or 2.

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	Comments
0 [#] 5 1095.6 [#] 3	7/2 ⁺ 11/2 ⁺		
1947.6 [#] 4 2051.2 4 2194 5 4	$(15/2^+)$ (13/2) $(15/2^-)$		
2324.9 [@] 5	$(19/2^{-})$ $(19/2^{-})$	0.165 µs 20	$T_{1/2}$: From the delayed coincidences between fission fragments and γ 's: fission fragment detectors was used to trigger EUROBALL III.
2378.2 6 2378.7 [#] 7 2379.2 5 2485.7 6 2678.3 7	(19/2+)		
2863.8 [@] 6 3194.5 9	(21/2 ⁻)		
3255.7 [@] 6 3670.8 <i>10</i>	(23/2 ⁻)		
3868.3 [@] 7 4007.2 11	(25/2 ⁻)		
4255.0 [@] 7 4736.3 [@] 8	$(27/2^{-})$ (29/2)		
5101.7 [@] 9 5354.5 [@] 10	(31/2) (33/2)		

[†] From a least-squares fit to $E(\gamma' s)$, unless otherwise noted.

[‡] Authors' values. The multipolarities of the γ 's are not given. The arguments for J^{π} assignments of authors consist of i)the assumptions that between yrast level transitions, spin values increase with the excitation energies, ii)systematics, iii)possible existence of crossover transitions.

Positive-parity band.

[@] Negative-parity band.

(HI,xnγ) **2005Po03** (continued)

$\gamma(^{127}\text{Sb})$

Eγ	I_{γ}	E_i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}
130.4 2	31 7	2324.9	$(19/2^{-})$	2194.5	$(15/2^{-})$
143.2 2	20 5	2194.5	$(15/2^{-})$	2051.2	(13/2)
160.8 <i>3</i>	82	2485.7		2324.9	$(19/2^{-})$
183.7 4	82	2378.2		2194.5	$(15/2^{-})$
192.6 4	3.8 11	2678.3		2485.7	
246.9 2	61 9	2194.5	$(15/2^{-})$	1947.6	$(15/2^+)$
252.8 4	3.1 12	5354.5	(33/2)	5101.7	(31/2)
328.0 <i>3</i>	92	2379.2		2051.2	(13/2)
336.4 5	1.3 5	4007.2		3670.8	
365.4 4	4.6 12	5101.7	(31/2)	4736.3	(29/2)
386.6 4	5.4 15	4255.0	$(27/2^{-})$	3868.3	$(25/2^{-})$
391.8 4	11 <i>3</i>	3255.7	$(23/2^{-})$	2863.8	$(21/2^{-})$
431.1 5	1.5 5	2378.7	$(19/2^+)$	1947.6	$(15/2^+)$
476.3 5	1.5 5	3670.8		3194.5	
481.3 4	4.6 13	4736.3	(29/2)	4255.0	$(27/2^{-})$
516.2 5	3.1 9	3194.5		2678.3	
538.9 <i>3</i>	15 4	2863.8	$(21/2^{-})$	2324.9	$(19/2^{-})$
612.6 4	82	3868.3	$(25/2^{-})$	3255.7	$(23/2^{-})$
852.0 2	100 10	1947.6	$(15/2^+)$	1095.6	$11/2^{+}$
931.0 5	4.6 12	3255.7	$(23/2^{-})$	2324.9	$(19/2^{-})$
955.5 4	54 6	2051.2	(13/2)	1095.6	$11/2^{+}$
999.3 <i>5</i>	6.2 16	4255.0	$(27/2^{-})$	3255.7	$(23/2^{-})$
1095.6 <i>3</i>		1095.6	$11/2^{+}$	0	7/2+

 $^{127}_{51}{\rm Sb}_{76}$