$^{127} {\rm Ba}\,\beta^+$ decay 1976Be11,1999Co22

History							
Туре	Author	Citation	Literature Cutoff Date				
Full Evaluation	A. Hashizume	NDS 112, 1647 (2011)	1-Oct-2009				

Parent: ¹²⁷Ba: E=0.0; $J^{\pi}=1/2^+$; $T_{1/2}=12.7 \text{ min } 4$; $Q(\beta^+)=3424 \ 13$; % β^+ decay=100.0

The decay scheme is that proposed by 1976Be11 on the basis of $\gamma\gamma$ coin and E γ sums.

1999Co22: Ta(p,spall) E=1 GeV, ISOLDE; γ -ce PAC; BaF₂ scintillator.

for γ , plastic scintillator-magnetic lens for ce.

1976Be11: Ce(p,spall) E=600 MeV, ¹²⁷La β^+ decay, chem, mass; semi γ , ce, $\gamma\gamma$ coin, $(\beta^+)(\gamma)$ coin, semi-scin $(\beta^+)(\gamma)(t)$.

1977Pa10: ¹³³Cs(p,7n) chem, semi γ , $\gamma\gamma$ (t). 1975Pa03: ¹¹⁵In(¹⁶O,4n), ¹²⁷La $\varepsilon + \beta^+$ decay; semi γ , $\gamma\gamma$ coin.

1987Fr10: Ce(³He,X) E=270 MeV, on-line mass; ce, $ce\gamma(t)$.

Other: 1968Da09: T_{1/2}.

I(K x ray)=470 50, I(γ^{\pm})=877 70; values are relative to I(180.8 γ)=100.0 (1976Be11).

¹²⁷Cs Levels

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	Comments
0.0	$1/2^{+}$	6.25 h 10	$\mu = +1.459 \ 7$
66.24 17	(5/2)+	24.88 ns 30	μ : ABLS (1987Co19), μ value relative to μ =+2.582 <i>1</i> for ¹³³ Cs (7/2 ⁺ g.s.). μ =2.7 5 O=0.58 <i>1</i> 2
			$T_{1/2}$: From (114.8 γ)(66.3 ce)(t) (1999Co22). Other: 25.5 ns <i>15</i> (1977Pa10), 24.5 ns <i>30</i> (1976Be11). μ : TDPAC (1999Co22).
			Q: From PAC (1999Co22). From Q=0.51 5 of 561 keV state in 80 Rb (1999Co22) which is isovalent to Cs.
138.90 20	$(3/2)^+$	120 ps 20	$T_{1/2}$: from ce γ (t)-delayed coin (1987Fr10).
180.97 17	3/2+	≤60 ps	$T_{1/2}$: from ce γ (t)-delayed coin (1987Fr10).
567.61 22	1/2,3/2		
578.0? 3			
590.0? 6			
621./? /	1/0.2/0		
/13.14	1/2,3/2		
072.34 1151 19 <i>4</i>	1/2,3/2		
1200 07 25	1/2 3/2		
1200.97 25	1/2, 3/2 1/2, 3/2		
1566.31.22	1/2.3/2		
1618.0? 3	1/=,0/=		
1981.57 24	1/2,3/2		
2089.7 3	1/2,3/2		
2143.8 7	1/2,3/2,5/2-		
2238.5 4	1/2,3/2		
2255.7 5	1/2,3/2		
2321.17 23	1/2,3/2		

[†] From a least-squares fit to E_{γ} 's.

[‡] From Adopted Levels.

			¹²⁷ Ba	β^+ decay	1976Be11,1	999Co22 (continued)	
ε, β^+ radiations							
E(decay)	E(level)	$I\beta^+$	Ιε [†]	Log ft	$I(\varepsilon + \beta^+)^{\dagger}$	Comments	
(1103 13)	2321.17		0.71 11	5.73 7	0.71 11	εK=0.84844 9; εL=0.11865 7; εM+=0.03291 3	
(1168 13)	2255.7		0.15 4	6.46 12	0.15 4	εK=0.8488; εL=0.11833 7; εM+=0.03280 2	
(1186 13)	2238.5		0.45 7	5.99 7	0.45 7	εK=0.8489; εL=0.11825 6; εM+=0.03278 2	
(1280 13)	2143.8		0.125 24	6.62 9	0.125 24	εK=0.8491; εL=0.11781 7; εM+=0.03264 2	
(1334 13)	2089.7		0.50 8	6.05 8	0.50 8	εK=0.8489 1; εL=0.11755 7; εM+=0.03256 2	
(1442 13)	1981.57	0.0018 4	0.53 9	6.10 8	0.53 9	av $E\beta$ =198.0 57; ε K=0.8473 4; ε L=0.11692 9; ε M+=0.03236 3	
(1806 13)	1618.0?	0.0090 18	0.25 5	6.62 9	0.26 5	av $E\beta$ =356.8 57; ε K=0.8217 17; ε L=0.1124 3; ε M+=0.03108 8	
(1858 13)	1566.31	0.037 6	0.82 11	6.13 7	0.86 12	av Eβ=379.4 57; εK=0.8146 20; εL=0.1113 3; εM+=0.03077 9	
(2135 13)	1289.3	0.049 8	0.40 6	6.56 7	0.45 7	av $E\beta$ =501.2 58; ε K=0.759 4; ε L=0.1033 5; ε M+=0.02854 13	
(2223 13)	1200.97	0.26 4	1.6 <i>3</i>	5.99 7	1.9 3	av $E\beta$ =540.2 58; ε K=0.736 4; ε L=0.1000 6; ε M+=0.02763 15	
(2273 13)	1151.1?	0.11 2	0.63 8	6.42 6	0.74 10	av $E\beta$ =562.3 58; ε K=0.722 4; ε L=0.0980 6; ε M+=0.02708 15	
(2552 13)	872.5	0.026 6	0.074 19	7.45 11	0.100 25	av $E\beta$ =686.6 59; ε K=0.632 5; ε L=0.0856 7; ε M+=0.02363 18	
(2711 13)	713.1	0.065 13	0.14 3	7.25 9	0.20 4	av $E\beta$ =758.2 59; ε K=0.576 5; ε L=0.0779 7; ε M+=0.02151 78	
(2802 13)	621.7?	0.03 1	0.05 2	7.70 17	0.08 3	av $E\beta$ =799.4 59; ε K=0.544 5; ε L=0.0736 7; ε M+=0.02030 18	
(2834 13)	590.0?	0.20 5	0.33 8	6.89 10	0.53 12	av $E\beta$ =813.7 59; ϵ K=0.533 5; ϵ L=0.0720 7; ϵ M+=0.01988 78	
(2846 13)	578.0?	0.20 3	0.33 6	6.90 8	0.53 9	av $E\beta$ =819.2 59; ϵ K=0.529 5; ϵ L=0.0715 7; ϵ M+=0.01972 17	
(2856 13)	567.61	0.09 3	0.15 5	7.25 15	0.24 8	av $E\beta$ =823.9 59; ε K=0.525 5; ε L=0.0710 7; ε M+=0.01959 17	
(3243 13)	180.97	15 2	14 2	5.40 7	29 4	av $E\beta$ =999.7 60; ε K=0.400 4; ε L=0.0539 6; ε K=0.1488 /5	
(3285 13)	138.90	0.65 16	0.55 14	6.81 11	1.2 3	av $E\beta$ =1019.0 60; ε K=0.388 4; ε L=0.0523 5; ε M+=0.01442 14	
(3424 13)	0.0	36.1 14	25.1 10	5.182 24	61.2 24	av $E\beta$ =1082.7 60; ε K=0.350 4; ε L=0.0471 5; ε M+=0.01299 13	

[†] Absolute intensity per 100 decays.

 $\gamma(^{127}Cs)$

I γ normalization: $\varepsilon + \beta^+$ feeding to g.s. is estimated from I($\varepsilon + \beta^+$ to g.s.)/I($\varepsilon + \beta^+$ to 180.96 level)=2.14 (1976Be11). Uncertainty is estimated from those for both I($\varepsilon + \beta^+$).

E_{γ}^{\dagger}	I_{γ} ^{#&}	E_i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f \mathbf{J}_f^{\pi}$	Mult. [‡]	α@	Comments
66.3 3	17.1 17	66.24	(5/2)+	0.0 1/2+	E2	8.20 18	B(E2)(W.u.)=49 4 $\alpha(K)=3.93 8; \alpha(L)=3.37 9; \alpha(M)=0.735 19; \alpha(N+)=0.165 5$ $\alpha(N)=0.148 4; \alpha(O)=0.0169 5; \alpha(P)=0.0001027 19$ $\alpha(K)\exp=3.6 3 \text{ if mult}(72.8\gamma)=M1 (1977Pa10).$ Mult.: $\alpha(K)\exp$ gives E2(+M1) with $\delta > 1.0$. From transition intensity balance, $\alpha(\exp)$ in IT decay gives $\delta > 1.2$. From adopted J^{π} values, $\Delta J=2$ is required.

Continued on next page (footnotes at end of table)

 $^{127}_{55}\mathrm{Cs}_{72}\text{--}3$

				127 Ba β^+	decay	1976Be1	1,1999Co22	2 (continued	<u>)</u>
$\gamma(^{127}Cs)$ (continued)									
E_{γ}^{\dagger}	Ι _γ #&	E _i (level)	\mathbf{J}_i^π	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [‡]	δ	α [@]	Comments
72.8 5	6.1 5	138.90	(3/2)+	66.24	(5/2)+	M1		2.24 6	B(M1)(W.u.)=0.14 3 $\alpha(K)=1.92 5; \alpha(L)=0.257 7;$ $\alpha(M)=0.0526 13;$ $\alpha(N+)=0.0127 4$ $\alpha(N)=0.0111 3; \alpha(O)=0.00154 4;$ $\alpha(P)=7.55\times10^{-5} 19$ $\alpha(L)\exp=0.3$ normalized to $\alpha(L)(66.3\gamma E2).$
114.8 <i>3</i>	75 3	180.97	3/2+	66.24	(5/2)+	M1		0.609 <i>10</i>	Mult.: from α (L)exp. B(M1)(W.u.)>0.075 α (K)=0.522 9; α (L)=0.0693 11; α (M)=0.01420 23; α (N+)=0.00344 6 α (N)=0.00300 5; α (O)=0.000417 7; α (P)=2.05×10 ⁻⁵ 4 Ice(K)/Ice(L+M+N+)=6.8 7 (1987Fr10). α (K)exp=0.5 1 and K/L=5.6 +19–15 normalized to α (L)(66.3 γ E2). B(M1)(W.u.)=0.0026 14
139.0 8	0.8 4	138.90	(3/2)+	0.0	1/2+	[M1]		0.356 8	$B(M)(W.u.)=0.0026 \ 14$ $\alpha(K)=0.305 \ 7; \ \alpha(L)=0.0404 \ 9;$ $\alpha(M)=0.00827 \ 18;$ $\alpha(N+)=0.00200 \ 5$ $\alpha(N)=0.00175 \ 4; \ \alpha(O)=0.000243$ $6; \ \alpha(P)=1.20\times 10^{-5} \ 3$
180.8 <i>3</i>	100	180.97	3/2+	0.0	1/2+	M1+E2	0.47 20	0.184 9	6; $\alpha(P)=1.20\times10^{-5} 3$ B(M1)(W.u.)>0.018; B(E2)(W.u.)>29 $\alpha(K)=0.154 5; \alpha(L)=0.024 3;$ $\alpha(M)=0.0049 7;$ $\alpha(N+)=0.00117 15$ $\alpha(N)=0.00102 14; \alpha(O)=0.000138$ $15; \alpha(P)=5.77\times10^{-6} 9$ δ : from K/L (1987Fr10). $\alpha(K)\exp=0.14 3$ and K/L=3.5 +14-10 normalized to $\alpha(L)(66.3\gamma E2).$ Ice(K)/Ice(L+M+N+)=5.2 5 (1987Fr10).
429.3 6 441.0 10 451.5 10 523.5 7 532.1 7 567.5 3 573.9 5 578.0 3 *619.0 10 621.5 8 *625 5	$\begin{array}{c} 2.2 \ 4 \\ 0.4 \ 2 \\ 0.7 \ 2 \\ 3.5 \ 8 \\ 0.4 \ 1 \\ 2.8 \ 3 \\ 0.7 \ 2 \\ 5.2 \ 5 \\ \approx 0.1 \\ 0.2 \ 1 \\ 0.2 \ 1 \end{array}$	567.61 621.7? 590.0? 590.0? 713.1 567.61 713.1 578.0? 621.7?	1/2,3/2 1/2,3/2 1/2,3/2 1/2,3/2	138.90 180.97 138.90 66.24 180.97 0.0 138.90 0.0	$(3/2)^{+} 3/2^{+} (3/2)^{+} (5/2)^{+} 3/2^{+} 1/2^{+} (3/2)^{+} 1/2^{+$				(1987Fr10).
*625.5 7 647.1 8 691.9 7 713.5 8 872.5 5 1012.3 5 1019.8 5	$\begin{array}{c} 0.4 \ l \\ 0.4 \ l \\ 0.4 \ l \\ \approx 0.1 \\ 0.8 \ l \\ 0.9 \ l \\ 1.3 \ l \end{array}$	713.1 872.5 713.1 872.5 1151.1? 1200.97	1/2,3/2 1/2,3/2 1/2,3/2 1/2,3/2 1/2,3/2	66.24 180.97 0.0 0.0 138.90 180.97	$(5/2)^+$ $3/2^+$ $1/2^+$ $1/2^+$ $(3/2)^+$ $3/2^+$				

Continued on next page (footnotes at end of table)

			12	⁷ Ba β^+ decay	1976Be11,1999C
					$\gamma(^{127}\text{Cs})$ (continued)
E_{γ}^{\dagger}	Ι _γ #&	E _i (level)	\mathbf{J}_{i}^{π}	E_{f}	J_f^{π}
1062.0.10	0.4.1	1200.07	1/2 2/2	128.00	$(2/2)^+$
1002.0 10	252	1200.97	1/2,3/2	136.90	(5/2)
1004.9 5	5.5 5	1280.3	1/23/2	180.07	(3/2) $3/2^+$
1125 2 10	~0.9 2	1209.5	1/2, 3/2 1/2, 3/2	66.24	$\frac{3}{2}$
$1155.2 \ 10$ $1150 \ 7^{a} \ 7$	≈ 0.1	1200.97	1/2,3/2	00.24	(3/2) $1/2^+$
1150.77	$1.5 \ 2$	1131.17	1/2 2/2	128.00	$\frac{1}{2}$
1130.7 7	1.3^{-2}	1269.5	1/2,3/2	138.90	(3/2)
1201.0 3	13.0 13	1200.97	1/2,3/2	0.0	$1/2^{+}$
1222.9 8	0.2 I	1289.3	1/2,3/2	66.24	$(5/2)^{+}$
1289.3 4	1.0 1	1289.3	1/2,3/2	0.0	$1/2^{+}$
1385.2.5	0.8 2	1566.31	1/2,3/2	180.97	3/2+
1437.5 10	≈0.1	1618.0?	1/0.0/0	180.97	3/2
1448.8 5	0.4 1	2321.17	1/2,3/2	872.5	1/2,3/2
1500.1 3	3.0 3	1566.31	1/2,3/2	66.24	$(5/2)^{+}$
1511.2 10	1.0 1	2089.7	1/2,3/2	578.0?	1/2.2/2
1522.0 7	0.6 1	2089.7	1/2,3/2	567.61	1/2,3/2
1566.3 3	3.1 3	1566.31	1/2,3/2	0.0	1/2*
1576.3 10	0.5 1	2143.8	1/2,3/2,5	/2 ⁻ 567.61	1/2,3/2
1618.0 3	2.0 3	1618.0?		0.0	1/2+
x1697.0 8	0.4 2				
1753.6 <i>3</i>	2.0 3	2321.17	1/2,3/2	567.61	1/2,3/2
1800.1 6	0.6 2	1981.57	1/2,3/2	180.97	3/2+
1842.2 6	0.9 2	1981.57	1/2,3/2	138.90	$(3/2)^+$
1915.3 6	0.9 <i>3</i>	1981.57	1/2,3/2	66.24	$(5/2)^+$
^x 1920.6 8	0.3 1				
1950.8 6	1.1 2	2089.7	1/2,3/2	138.90	$(3/2)^+$
1962.8 8	0.5 1	2143.8	1/2,3/2,5	$/2^{-}$ 180.97	3/2+
1981.8 <i>3</i>	1.8 2	1981.57	1/2,3/2	0.0	1/2+
^x 1991.9 6	1.0 1				
^x 2028.2 7	0.5 1				
2057.0 6	1.0 2	2238.5	1/2,3/2	180.97	3/2+
2075.0 6	0.9 2	2255.7	1/2,3/2	180.97	3/2+
2089.8 4	1.3 2	2089.7	1/2,3/2	0.0	$1/2^{+}$
2100.3 5	1.1 2	2238.5	1/2,3/2	138.90	$(3/2)^+$
2141.0 8	0.3 1	2321.17	1/2,3/2	180.97	3/2+
2172.0 6	1.1 2	2238.5	1/2,3/2	66.24	$(5/2)^+$
2182.0 3	1.8 2	2321.17	1/2,3/2	138.90	$(3/2)^+$
2189.0 7	0.3 1	2255.7	1/2,3/2	66.24	$(5/2)^+$
^x 2222.4 7	0.5 1				
2238.1 10	0.4 1	2238.5	1/2,3/2	0.0	$1/2^{+}$
2321.2 5	1.2 2	2321.17	1/2,3/2	0.0	1/2+
^x 2467.8 7	1.2 2				

Co22 (continued)

[†] From 1976Be11. The 682.06 γ reported by 1975Pa03 was reassigned to the ¹²⁶Ba β^+ decay by 1976Be11 in authors' fig. 3.

[‡] From $\alpha(\exp)$ (1976Be11,1977Pa10) and $\gamma(\theta)$ (1971Co05).

[#] Relative to $I(180.8\gamma)=100$.

[@] Theoretical conversion coefficients are calculated using BrIcc code for the multipolarity and mixing ratio indicated.

& For absolute intensity per 100 decays, multiply by 0.125 15.

^a Multiply placed with undivided intensity.

 $x \gamma$ ray not placed in level scheme.

S

 $^{127}_{55}$ Cs₇₂-5

From ENSDF

 $^{127}_{55}\mathrm{Cs}_{72}\text{-}5$