		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	A. Hashizume	NDS 112,1647 (2011)	1-Oct-2009

 $Q(\beta^{-}) = -3422 \ 13$; $S(n) = 9961 \ 12$; $S(p) = 4384 \ 7$; $Q(\alpha) = -721 \ 7$ 2012Wa38 Note: Current evaluation has used the following Q record -342413 9966 13 4360 8 -722 7 2003Au03.

From $E(\beta^+)=2.23$ MeV 10 to 180.96 level, $Q(\varepsilon)=3.45$ MeV 10 (1976Be11).

Nuclear structure calculations on the levels and their properties: 2003Zu05, 2002Ho07, 1997Yo06, 1994Vo17, 1992Zh10, 1990Ma46, 1985Ba15, 1984Al19, 1983KrZN, 1981Ga24, 1980MiZP, 1979Ga01, 1976So06.

¹²⁷Cs Levels

Band(α ,J) negative-parity band-1.

Band(C,K) $(\pi,\alpha)=(+,+1/2)$ 1/2[420] band. Configuration= $(\pi d_{5/2})$.

Band(d,L) positive-parity band-1. Configuration= $((\pi d_{5/2})(\nu h_{11/2})^2)$.

Band(E,M) 3/2[422] band. Configuration=(π g_{7/2}).

Band(F,O) positive-parity band-2. Probable configuration= $((\pi g_{7/2})(\nu h_{11/2})^2)$.

Band(γ ,n) 1/2[550] band. Configuration=(π h_{11/2}).

Band(H,P) negative-parity band-2. Configuration= $((\pi h_{11/2})(\nu h_{11/2})^2)$.

Band(I,Q) negative-parity band-3.

J(C,E,G) Stretched Q cascades and expected band structure.

Cross Reference (XREF) Flags

A	¹²⁷ Ba	β^+	decay
**	Du	~	accu

- ¹²⁷Ba $β^+$ decay ¹²⁷Cs IT decay (55 μs) В
- $^{127}\mathrm{I}(\alpha,\!4\mathrm{n}\gamma)$ С
- D $(HI,xn\gamma)$

E(level) [†]	\mathbf{J}^{π}	$T_{1/2}^{a}$	XREF	Comments
0.0	1/2+	6.25 h <i>10</i>	ABCD	$\% \varepsilon + \% \beta^+ = 100$ $\mu = +1.459 \ 7$ J^{π} : atomic beam J=1/2 (1976Fu06); μ . μ : ABLS (1987Co19), μ value relative to $\mu = +2.582 \ I$ for ¹³³ Cs (7/2 ⁺ g.s.). Configuration=(π 3s _{1/2}). T _{1/2} : from 1954Ma54. Others: 5.5 h 5 (1950Fi16), 6.1 h 2 (1954Mi16,1955Ni21). $(cr^2 > 1/2/(charge) = 4.794 \ 6 (2004 \text{Ap} 14)$
66.09 11	(5/2)+	24.88 ns <i>30</i>	ABCD	
138.96 <i>12</i>	$(3/2)^+$	120 ps 20	ABCD	J^{π} : E2 γ from (7/2) ⁺ , log ft=6.82 from 1/2 ⁺ . There is from (1887E+10) in ¹²⁷ Ba β^+ decay
180.92 <i>16</i>	3/2+	≤60 ps	A	$J_{1/2}^{\pi}$: M1+E2 γ to 1/2 ⁺ . T _{1/2} : from 1987Fr10 in ¹²⁷ Ba β^+ decay.
246.53 22 272.88 <i>16</i> 452.23 21	$(5/2^+)$ $(7/2)^+$ $(11/2)^-$	55 μs 3	CD BCD BCD	J^{π} : (M1+E2) γ to (5/2) ⁺ . J^{π} : M2 from (11/2) ⁻ , (M1+E2)–E2 cascade to 1/2 ⁺ g.s. J^{π} : from systematics, and M2, (M1+E2), E2 cascade to 1/2 ⁺ g.s. $T_{1/2}$: from 1980Dr07 in (α ,4n γ).

Continued on next page (footnotes at end of table)

¹²⁷Cs Levels (continued)

E(level) [†]	J^{π}	$T_{1/2}^{a}$	XREF	Comments
454.4 6	$(9/2^+)$		CD	J^{π} : stretched Q to $(5/2)^+$.
567.62 22	1/2,3/2		Α	J^{π} : γ to $1/2^+$, log ft=7.27 from $1/2^+$.
578.0? <i>3</i>			Α	
589.7? 6			Α	
621.7? 7			Α	
686.0 4	$(9/2^+)$	0	CD	J^{π} : stretched Q to $(5/2)^{+}$.
707.35 25	$(11/2^{-})$ 1/2/2/2	<8 ns		J [*] : stretched (E2) γ to $(1/2)^+$.
713.17	1/2, 3/2		л	$J : \gamma to 1/2 , tog jt = 7.20 from 1/2 .$
854.15# 23	$(9/2^+)^{"}$	< 9 no	CD CD	J^{A} : D+Q to $(1/2)^{+}$.
872 5 4	(13/2)	<0 IIS	A	$J^{\pi} \cdot \chi \text{ to } 1/2^+ \log ff = 7.47 \text{ from } 1/2^+$
1043.4 8	$(13/2^+)$		D	J^{π} : stretched O to $(11/2)^+$.
1131.0 [‡] .3	$(11/2^+)^{\#}$	<8 ns	CD	I^{π} : D+O to (9/2) ⁺
1151.0? 4	(11/2)	VO 115	A	
1200.95 25	1/2,3/2		Α	J^{π} : γ to $1/2^+$, log ft=6.01 from $1/2^+$.
1289.3 <i>3</i>	1/2,3/2		Α	J^{π} : γ to $1/2^+$, log <i>ft</i> =6.58 from $1/2^+$.
1316.1 5	$(13/2^+)$		D	J^{π} : stretched Q to $(9/2^+)$.
1323.8 5	$(15/2^+)$	<8 ns	CD	J^{π} : stretched Q to $(11/2^+)$.
1442.4 [‡] 4	$(13/2^+)^{\#}$	<8 ns	CD	J^{π} : γ 's to (9/2 ⁺) and (11/2 ⁺).
1458.2 5	$(19/2^{-})$	<8 ns	CD	J^{n} : stretched Q to (15/2 ⁻).
1492.3 4	(1//2,19/2)	<8 ns	CD	XREF: C(1493.8)D(1491.5). \overline{M}_{1} (E1) or from (10/2 ⁺) or to (15/2 ⁻)
1566 24 21	1/2 3/2		۵	J : (E1) γ from (19/2), γ to (13/2). I^{π} : γ to $1/2^+$ log $f_{t} = 6.14$ from $1/2^+$
1618.0? 3	1/2,5/2		A	$5 \cdot 7 + 6 \cdot 1/2 \cdot 7 + 6 \cdot 6 \cdot 1 + 110 + 11/2 \cdot 7 \cdot 7 + 10 + 11/2 \cdot 7 + 10 + 10 + 11/2 \cdot 7 + 10 + 10 + 10 + 10 + 10 + 10 + 10 + $
1787 9 5	$(15/2^+)^{\#}$		р	I^{π} : D+O to (13/2 ⁺) no γ to (9/2 ⁺)
1802.1 9	$(17/2^+)$		D	J^{π} : stretched O to (13/2 ⁺).
1956.3 4	$(19/2^{-})$	<8 ns	CD	XREF: C(1959.0)D(1955.6).
				J^{π} : D+Q to (17/2 ⁻), Q to (15/2) ⁻ .
1981.56 23	1/2,3/2		Α	J^{π} : γ to $1/2^+$, log <i>ft</i> =6.12 from $1/2^+$.
2089.7 3	1/2,3/2		A	J^{π} : γ to $1/2^+$, log ft=6.07 from $1/2^+$.
2094.2 5	$(13/2)^+$	< 9 mg	D	J^{*} : (E1) to (11/2 ⁺).
2090.9 5	(19/2)	<o ns<="" td=""><td>CD</td><td>AREF: C(2090.0). I^{π}: stretched O to (15/2⁺)</td></o>	CD	AREF: C(2090.0). I^{π} : stretched O to (15/2 ⁺)
				T _{1/2} : from $(\alpha.4n\gamma)$.
2104.8 5	$(17/2^+)$		D	J^{π} : stretched Q to (13/2 ⁺).
2117.5 5	$(21/2^{-})$	<8 ns	CD	XREF: C(2119.1)D(2116.7).
				J^{π} : D+Q to (19/2 ⁻).
21.42.0.7	1/2 2/2			$T_{1/2}$: from (α ,4n γ).
2143.8 /	1/2,3/2		Α	J^{n} : log ft=6.64 from 1/2 ⁺ .
2167.1+ 8	$(17/2^+)^{\#}$		D	J^{π} : γ 's to (13/2 ⁺) and (15/2 ⁺).
2202.5 6	$(15/2^{-})^{\mathbf{x}}$		D	
2238.5 4	1/2,3/2		A	J^{π} : γ to $1/2^+$, log $ft=6.01$ from $1/2^+$.
2255.6 5	1/2, 3/2	< 9 mg	A	J^{A} : log ft=6.4 / from 1/2 '.
2238.5 5	(25/2) $1/2^+ 3/2^+$	<o ns<="" td=""><td></td><td>AREF: C(2200.3). $I^{\pi_{12}}$ at the $1/2^{+}$ log $ft=5.75$ from $1/2^{+}$</td></o>		AREF: C(2200.3). $I^{\pi_{12}}$ at the $1/2^{+}$ log $ft=5.75$ from $1/2^{+}$
2321.19 21	$(17/2^{-})^{\&}$		л	J : y = 0 + 2 + 0 = 0.75 from 1/2 = 0.75
25780	(17/2)		ע	$J : D + Q = (15/2^{+})$.
2578.0* 9	$(19/2^{+})^{*}$		D	J^{*} ; γ s to (15/2 ⁺) and (17/2 ⁺).
2039.1 3	(23/2)"		CD	AKEF: $U(2042.0)$. I^{π} : stretched O to $(10/2^{-})$
2691.0.9	$(21/2^{+})$		ם	J . Succelled Q to $(17/2)$.
2696.8.7	$(19/2^{-})^{\&}$		ם ת	I^{π} . D+O to $17/2^{-1}$
2747.8 5	$(19/2^+)$		D	J^{π} : (E1) γ to (17/2 ⁻).
2897.6.6	$(21/2^+)^{\#}$		- ח	J^{π} : stretched O to (17/2 ⁺), γ to (19/2 ⁻)
	(=1/=)		2	

Continued on next page (footnotes at end of table)

¹²⁷Cs Levels (continued)

E(level) [†]	\mathbf{J}^{π}	$T_{1/2}^{a}$	XREF	Comments
2935.7 5	(25/2 ⁻)	<8 ns	CD	XREF: C(2938.9)D(2934.9). J^{π} : D+Q to (23/2 ⁻), Q to (21/2 ⁻).
2959 8 12			Л	$1_{1/2}$: <40 ns in (α ,4n γ).
3000.2 6	(23/2 ⁺)	<8 ns	CD	XREF: C(3003.2)D(2999.4). J^{π} : stretched Q to (19/2 ⁺).
3002.4 6	(23/2+)	<8 ns	CD	XREF: C(3008.3)D(3001.4). J^{π} : stretched Q to (19/2 ⁺). $T_{1/2}$: from (α ,4n γ).
3008.4 7	$(21/2^{-})^{\&}$		D	J^{π} : γ to (19/2 ⁻).
3018.0 [‡] <i>11</i>	$(21/2^+)^{\#}$		D	J^{π} : γ' s to $(17/2^+)$ and $(19/2^+)$.
3061.2.6	$(23/2^+)^{\#}$		D	I^{π} : D+O to (21/2 ⁺)
3062?	()		D	
3156.8 5	(27/2 ⁻)	<8 ns	CD	XREF: C(3161.1)D(3155.9). J^{π} : stretched Q to (23/2 ⁻).
3261.9 6	$(25/2^+)^{(a)}$	<8 ns	CD	XREF: C(3265.7). J^{π} : D+Q to (23/2 ⁺). $T_{1/2}$: <16 ns in (α ,4n γ).
3353.8 6	$(25/2^+)^{\#}$		D	J^{π} : D+O to (23/2 ⁺).
3365.8 6	$(27/2^{-})^{\#}$		D	J^{π} : stretched Q to $(23/2^{-})$.
3369.8 8			D	
3563.6 7	(27/2 ⁺) [@]		CD	XREF: C(3567.6). J^{π} : D+Q to (25/2 ⁺).
3645.8 <i>12</i> 3647.0 <i>14</i> 3766.0 8	(27/2 ⁺)		D D D	J^{π} : γ to (25/2 ⁺).
3815.6.6	$(29/2^{-})^{\#}$		D	J^{π} : D+O to (27/2 ⁻). O to (25/2 ⁻).
3913.7 7	$(29/2^+)^{@}$		D	J^{π} : D+O to (27/2 ⁺).
3984.2 4036.8 <i>16</i>	(D D	
4101.3 <i>6</i> 4175.3 <i>9</i>	(31/2 ⁻) [#]		D D	J^{π} : stretched Q to $(27/2^{-})$.
4305.2 8	$(31/2^+)^{@}$		D	J^{π} : D+O to (29/2 ⁺).
4391.8 19			D	
4640.4 8 4724.0 <i>10</i>	(33/2 ⁻) [#]		D D	J^{π} : D+Q to (31/2 ⁻).
4954.4 9	$(35/2^{-})^{\#}$		D	J^{π} : D+Q to (33/2 ⁻).
5179.1 <i>11</i>			D	
5187.3 13			D	
5865 4 12			D	
Jouj.4 12			ע	

- [†] From a least-squares fit of the adopted E_{γ} 's. [‡] Band(A): 9/2[404] band. Configuration= $(\pi g_{9/2})^{-1}$.
- [#] From γ -cascades to the base state and expected structure in addition to the argument given.
- [@] Stretched D+Q cascades and expected band structure.
- & $\Delta J=1 \gamma$ -cascades and expected band structure.
- ^{*a*} From (α ,4n γ), unless otherwise noted. For levels at 454.2 keV and greater and reported experimental half-lives by (α ,4n γ), values of < 8 ns are given based on the observation by 1990Li22 in (HI,xn γ). 1990Li22 state that no half-lives greater than 8 ns are observed, except for known low-lying isomeric $11/2^-$ and $5/2^+$ states.

	Adopted Levels, Gammas (continued)												
							$\gamma(^{127}$	Cs)					
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. ^C	δ^{c}	α^{d}	Comments				
66.09	(5/2)+	66.06 [#] 14	100.0	0.0	1/2+	E2		8.31 14	B(E2)(W.u.)=49 4 α (K)=3.96 6; α (L)=3.43 6; α (M)=0.748 13; α (N+)=0.168 3 α (N)=0.151 3; α (O)=0.0172 3; α (P)=0.0001037 16 Mult.: from ¹²⁷ Ba β ⁺ decay.				
138.96	(3/2)+	72.92 [#] 16	100 20	66.09	(5/2)+	M1		2.23	B(M1)(W.u.)=0.12 4 $\alpha(K)=1.91 \ 3; \ \alpha(L)=0.255 \ 4; \ \alpha(M)=0.0523 \ 8; \ \alpha(N+)=0.01266 \ 20 \ \alpha(N)=0.01105 \ 17; \ \alpha(O)=0.001535 \ 24; \ \alpha(P)=7.51\times10^{-5} \ 12 \ Mmk \ form \ 1^{27}P = \ 4 \ down$				
		139.00 [@] 19	43 13	0.0	1/2+	[M1]		0.356	Mult.: from ¹²⁷ Ba β^{+} decay. B(M1)(W.u.)=0.008 3 $\alpha(K)=0.305 5; \alpha(L)=0.0404 6; \alpha(M)=0.00827 12;$ $\alpha(N+)=0.00200 3$ $\alpha(N)=0.00175 3; \alpha(O)=0.000243 4; \alpha(P)=1.199\times10^{-5} 18$ I _{γ} : from ¹²⁷ Cs IT decay. Others: 13 7 in ¹²⁷ Ba β^{+} decay, 18 1				
180.92	3/2+	114.8 [‡] 3	75 3	66.09	(5/2)+	M1		0.609 10	in $(\alpha, 4n\gamma)$. B(M1)(W.u.)>0.075 $\alpha(K)=0.522 \ 9; \ \alpha(L)=0.0693 \ 11; \ \alpha(M)=0.01420 \ 23; \ \alpha(N+)=0.00344 \ 6$ $\alpha(N)=0.00300 \ 5; \ \alpha(O)=0.000417 \ 7; \ \alpha(P)=2.05\times10^{-5} \ 4$				
		180.8 [‡] <i>3</i>	100	0.0	1/2+	M1+E2	0.47 20	0.184 9	Mult., δ : from ¹² /Ba β ⁺ decay. B(M1)(W.u.)>0.018; B(E2)(W.u.)>29 α (K)=0.154 5; α (L)=0.024 3; α (M)=0.0049 7; α (N+)=0.00117 15 α (N)=0.00102 14; α (O)=0.000138 15; α (P)=5.77×10 ⁻⁶ 9				
246.53	(5/2+)	180.38 ^{<i>a</i>} 20	100	66.09	(5/2)+	(M1+E2)		0.21 4	Mult., δ : from ¹²⁷ Ba β^+ decay. $\alpha(K)=0.166 \ 18; \ \alpha(L)=0.031 \ 12; \ \alpha(M)=0.007 \ 3; \ \alpha(N+)=0.0015 \ 6$ $\alpha(N)=0.0014 \ 6; \ \alpha(O)=0.00018 \ 6; \ \alpha(P)=5.76\times10^{-6} \ 11$ Mult : from ¹²⁷ Ba β^+ decay				
272.88	(7/2)+	133.92 ^{&} 15	16 <i>1</i>	138.96	(3/2)+	(E2)		0.666	$\alpha(K)=0.481 \ 7; \ \alpha(L)=0.1467 \ 22; \ \alpha(M)=0.0314 \ 5; \\ \alpha(N+)=0.00720 \ 11 \\ \alpha(N)=0.00641 \ 10; \ \alpha(O)=0.000774 \ 12; \ \alpha(P)=1.414\times10^{-5} \ 21 \\ \alpha(N)=0.00641 \ 10; \ \alpha(O)=0.000774 \ 12; \ \alpha(P)=1.414\times10^{-5} \ 21 \\ \alpha(N)=0.00641 \ 10; \ \alpha(O)=0.000774 \ 12; \ \alpha(P)=1.414\times10^{-5} \ 21 \\ \alpha(N)=0.00641 \ 10; \ \alpha(O)=0.000774 \ 12; \ \alpha(P)=1.414\times10^{-5} \ 21 \\ \alpha(N)=0.00641 \ 10; \ \alpha(O)=0.000774 \ 12; \ \alpha(P)=1.414\times10^{-5} \ 21 \\ \alpha(N)=0.00641 \ 10; \ \alpha(O)=0.000774 \ 12; \ \alpha(P)=1.414\times10^{-5} \ 21 \\ \alpha(O)=0.000724 \ 10; \ \alpha(O)=0.000774 \ 10; \\alpha(O)=0.000774 \ 1$				
		206.7 <i>3</i>	100 <i>1</i>	66.09	(5/2)+	(M1+E2)	+0.28 3	0.1218 <i>19</i>	$\begin{aligned} & I_{\gamma}: \text{ from } {}^{127}\text{Cs IT decay. Other: 42 } I \text{ in (HI,xn\gamma).} \\ & \alpha(\text{K}) = 0.1038 \ I6; \ \alpha(\text{L}) = 0.0143 \ 3; \ \alpha(\text{M}) = 0.00294 \ 6; \\ & \alpha(\text{N}+) = 0.000709 \ I4 \\ & \alpha(\text{N}) = 0.000620 \ I2; \ \alpha(\text{O}) = 8.53 \times 10^{-5} \ I5; \ \alpha(\text{P}) = 4.00 \times 10^{-6} \ 6 \\ & \text{E}_{\gamma}: \text{ weighted av from IT decay, (HI,xn\gamma) and } (\alpha,4n\gamma). \end{aligned}$				
452.23	(11/2)-	179.30 20	100 4	272.88	(7/2)+	M2		1.097	I_{γ} : from ¹²⁷ Cs IT decay. B(M2)(W.u.)=0.051 5				

From ENSDF

 $^{127}_{55}\mathrm{Cs}_{72}\text{-}4$

 $^{127}_{55}\text{Cs}_{72}\text{-}4$

						Adopt	ed Lev	els, Gamma	s (continued)
							$\gamma(^{12})$	⁷ Cs) (contin	ued)
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}	E_f	\mathbf{J}_{f}^{π}	Mult. ^C	δ^{c}	α^{d}	Comments
452.23	(11/2) ⁻	386.3 ^{&} 3	24 2	66.09	(5/2)+	(E3)		0.0647	B(E3)(W.u.)=1.82 20 α (K)=0.0493 7; α (L)=0.01222 18; α (M)=0.00262 4; α (N+)=0.000609 9 α (N)=0.000539 8; α (O)=6.76×10 ⁻⁵ 10; α (P)=1.755×10 ⁻⁶ 25 I _y ,Mult.: from ¹²⁷ Cs IT decay. Additional information 1.
454.4	(9/2+)	181 <i>1</i> 388.8 ^{<i>a</i>} 16	<15 100 7	272.88 66.09	$(7/2)^+$ $(5/2)^+$	(E2)		0.0195 4	E _γ : unresolved doublet in (HI,xnγ). α (K)=0.0162 3; α (L)=0.00258 5; α (M)=0.000536 11; α (N+)=0.0001271 25 α (N)=0.0001117 22; α (O)=1.48×10 ⁻⁵ 3; α (P)=5.69×10 ⁻⁷ 11
567.62	1/2,3/2	429.3 [‡] 6 567.5 [‡] 3	79 <i>14</i> 100 <i>11</i>	138.96	$(3/2)^+$				
578 02		578 0 3	100 11	0.0	1/2 $1/2^+$				
589.72		451.0^{\ddagger} 10	20.6	138.96	$(3/2)^+$				
507.7.		523 5 [‡] 7	100 23	66.09	$(5/2)^+$				
621 72		$441.0^{\ddagger}.10$	100 20	180.92	$(3/2)^+$				
021.7.		621.5 [‡] 8	50 25	0.0	$1/2^+$				
686.0	$(9/2^+)$	231 1	<100	454.4	$(9/2^+)$				
		413 1	<100	272.88	$(7/2)^+$			0.01050	
		439.3 3	100 14	246.53	(5/2+)	(E2)		0.01358	$\alpha(K)=0.01139\ I6;\ \alpha(L)=0.001745\ 25;\ \alpha(M)=0.000361\ 6;\ \alpha(N+)=8.59\times10^{-5}\ I3$
707 25	$(11/2^{+})$	252 1	-7	151 1	$(0/2^{+})$				$\alpha(N)=7.54\times10^{-3}$ 11; $\alpha(O)=1.006\times10^{-3}$ 15; $\alpha(P)=4.05\times10^{-7}$ 6
107.55	(11/2)	434.48 ^{<i>a</i>} 19	100 3	272.88	$(9/2)^+$	(E2)		0.01402	B(E2)(W.u.) > 0.12
									$\alpha(\mathbf{K}) = 0.01175 \ 17; \ \alpha(\mathbf{L}) = 0.00181 \ 3; \ \alpha(\mathbf{M}) = 0.000374 \ 6; \\ \alpha(\mathbf{N}+) = 8.89 \times 10^{-5} \ 13 \\ \alpha(\mathbf{N}) = 7.81 \times 10^{-5} \ 14 \ \alpha(\mathbf{O}) = 1.041 \times 10^{-5} \ 15; \ \alpha(\mathbf{D}) = 4.17 \times 10^{-7} \ 6$
713 1	1/2 3/2	532 1 7	57 14	180.02	3/2+				$\alpha(N) = 7.81 \times 10^{-11}$, $\alpha(O) = 1.041 \times 10^{-15}$; $\alpha(P) = 4.17 \times 10^{-10}$
/13.1	1/2,3/2	573 9 5	100 29	138.96	$(3/2)^+$				
		647 1 * 8	57 14	66.09	$(5/2)^+$				
		713.5 [‡] 8	14 14	0.0	$1/2^+$				
854.15	$(9/2^+)$	167 1	<16	686.0	$(9/2^+)$				

S

From ENSDF

L

						Adopted L	evels, Gam	mas (continue	ed)
						γ	(^{127}Cs) (cor	ntinued)	
E _i (level)	\mathbf{J}_i^π	E_{γ}^{\dagger}	I_{γ}	\mathbf{E}_{f}	J_f^π	Mult. ^C	δ^{C}	α^{d}	Comments
854.15	(9/2+)	581.31 ^{<i>a</i>} 17	100 8	272.88	$(7/2)^+$	(M1+E2)	+0.19 2	0.00829 12	α (K)=0.00715 <i>11</i> ; α (L)=0.000909 <i>13</i> ; α (M)=0.000185 <i>3</i> ; α (N+)=4.50×10 ⁻⁵ <i>7</i>
866.5	(15/2 ⁻)	414.3 ^{<i>a</i>} 3	100	452.23	(11/2)-	(E2)		0.01611	$\begin{aligned} &\alpha(N) = 3.92 \times 10^{-5} \ 6; \ \alpha(O) = 5.48 \times 10^{-6} \ 8; \ \alpha(P) = 2.75 \times 10^{-7} \ 4 \\ &B(E2)(W.u.) > 0.15 \\ &\alpha(K) = 0.01347 \ 19; \ \alpha(L) = 0.00210 \ 3; \ \alpha(M) = 0.000436 \ 7; \\ &\alpha(N+) = 0.0001034 \ 15 \\ &\alpha(N) = 9.09 \times 10^{-5} \ 13; \ \alpha(O) = 1.208 \times 10^{-5} \ 18; \ \alpha(P) = 4.76 \times 10^{-7} \ 7 \end{aligned}$
872.5	1/2,3/2	691.9 [‡] 7	50 13	180.92	3/2+				
1043 4	$(13/2^+)$	872.5 + 5 336 1	100 <i>13</i> <16	0.0 707 35	$1/2^+$ (11/2 ⁺)				
1012.1	(15)2)	589 1	100 8	454.4	(9/2 ⁺)	(E2)		0.00605 9	$\alpha(K)=0.00514 \ 8; \ \alpha(L)=0.000729 \ 11; \ \alpha(M)=0.0001500 \ 23; \ \alpha(N+)=3.59\times10^{-5} \ 6 \ \alpha(N)=3.15\times10^{-5} \ 5; \ \alpha(O)=4.27\times10^{-6} \ 7; \ \alpha(P)=1.87\times10^{-7} \ 3 \ E_{\gamma}: \ unresolved \ doublet \ in \ (HI,xn\gamma); \ possible \ stretched \ E2 \ but not \ confirmed \ in \ (HI,xn\gamma).$
1131.0	(11/2 ⁺)	276.82 ^{<i>a</i>} 19	100	854.15	(9/2+)	(M1+E2)	+0.11 6	0.0549	$\alpha(\mathbf{K})=0.0472\ 7;\ \alpha(\mathbf{L})=0.00616\ 10;\ \alpha(\mathbf{M})=0.001260\ 20;\ \alpha(\mathbf{N}+)=0.000305\ 5$
1151.0?		1012.3 [‡] 5	26 3	138.96	$(3/2)^+$				$a(1)=0.0002007, a(0)=5.71\times10^{-0}, a(1)=1.07\times10^{-5}$
		1084.9 [‡] 5	100 9	66.09	$(5/2)^+$				
		1150.7 ^{‡b} 7	≤43	0.0	$1/2^{+}$				
1200.95	1/2,3/2	1019.8 [‡] 5	10.0 8	180.92	3/2+				
		1062.0 [‡] 10	3.1 8	138.96	$(3/2)^+$				
		1135.2 [‡] 10	≈0.8	66.09	$(5/2)^+$				
		1201.0 [‡] 3	100 12	0.0	$1/2^{+}$				
1289.3	1/2,3/2	1108.3 [‡] 5	60 13	180.92	3/2+				
		1150.7 [‡] <i>b</i> 7	100 13	138.96	$(3/2)^+$				
		1222.9 [‡] 8	13 7	66.09	$(5/2)^+$				
1216 1	(12/2+)	1289.3+ 4	67 7	0.0	$1/2^+$	(E2)		0.00500.0	
1310.1	(13/2*)	630.1 3	100	686.0	(9/2*)	(E2)		0.00508 8	$\alpha(\mathbf{K})=0.00432\ 6;\ \alpha(\mathbf{L})=0.000605\ 9;\ \alpha(\mathbf{M})=0.0001243\ 18;\alpha(\mathbf{N}+)=2.98\times10^{-5}\ 5\alpha(\mathbf{N})=2\ 61\times10^{-5}\ 4;\ \alpha(\mathbf{Q})=3\ 55\times10^{-6}\ 5;\ \alpha(\mathbf{P})=1\ 578\times10^{-7}\ 23$
1323.8	(15/2+)	616.5 ^{<i>a</i>} 4	100	707.35	(11/2 ⁺)	(E2)		0.00538 8	$B(E2)(W.u.)>0.021 \alpha(K)=0.00457 7; \alpha(L)=0.000642 9; \alpha(M)=0.0001320 19; \alpha(N+)=3.16\times10^{-5} 5 \alpha(N)=2.77\times10^{-5} 4; \alpha(O)=3.76\times10^{-6} 6; \alpha(P)=1.666\times10^{-7} 24$

					Adopted	Levels, Gami	mas (continu	ied)	
					<u>-</u>	$\gamma(^{127}\mathrm{Cs})$ (con	tinued)		
E _i (level)	J_i^π	E_{γ}^{\dagger}	I_{γ}	E_f	${ m J}_f^\pi$	Mult. ^C	δ^{c}	α^{d}	Comments
1442.4	$(13/2^+)$	311.5 ^a 3	100 20	1131.0	$(11/2^+)$				E_{γ} : unresolved doublet in (HI,xn γ).
1458.2	(19/2 ⁻)	588 <i>I</i> 591.7 ^{<i>a</i>} 4	40 100	854.15 866.5	(9/2 ⁺) (15/2 ⁻)	(E2)		0.00598 9	B(E2)(W.u.)>0.026 α (K)=0.00508 8; α (L)=0.000720 11; α (M)=0.0001481 21; α (N+)=3.55×10 ⁻⁵ 5 α (N)=3.11×10 ⁻⁵ 5; α (O)=4.21×10 ⁻⁶ 6;
1492.3	(17/2 ⁻ ,19/2 ⁻)	626.7 ^{<i>a</i>} 3	100	866.5	(15/2 ⁻)	D,Q			α (P)=1.85×10 ⁻⁷ 3 E _{γ} : unresolved doublet in (HI,xn γ). Mult.: from (α .4n γ).
1566.24	1/2,3/2	1385.2 [‡] 5	26 7	180.92	3/2+				
		1500.1 [‡] 3	97 10	66.09	$(5/2)^+$				
		1566.3 [‡] 3	100 10	0.0	$1/2^{+}$				
1618.0?		1437.5 [‡] 10	≈5	180.92	3/2+				
		1618.0 [‡] 3	100 15	0.0	1/2+				
1787.9	(15/2+)	345.6 <i>3</i>	100 33	1442.4	(13/2+)	(M1+E2)	+0.11 1	0.0308	$\alpha(K)=0.0265 \ 4; \ \alpha(L)=0.00343 \ 5; \alpha(M)=0.000700 \ 10; \ \alpha(N+)=0.0001697 \ 24 \alpha(N)=0.0001480 \ 21; \ \alpha(O)=2.07\times10^{-5} \ 3; \alpha(P)=1.028\times10^{-6} \ 15$
1000	(1 = 1 = 1)	656 1	<67	1131.0	$(11/2^+)$				
1802.1	(17/2+)	758.7 3	100	1043.4	(13/2+)	(E2)		0.00321 5	$\alpha(\mathbf{K})=0.00275 \ 4; \ \alpha(\mathbf{L})=0.000371 \ 6; \\ \alpha(\mathbf{M})=7.60\times10^{-5} \ 11; \ \alpha(\mathbf{N}+)=1.83\times10^{-5} \ 3 \\ \alpha(\mathbf{N})=1.599\times10^{-5} \ 23; \ \alpha(\mathbf{O})=2.19\times10^{-6} \ 3; \\ \alpha(\mathbf{P})=1 \ 0.01\times10^{-7} \ 15$
1956.3	(19/2 ⁻)	464.4 3	100 13	1492.3	(17/2 ⁻ ,19/2 ⁻)	(M1+E2)	-0.84 28	0.0133 6	$\alpha(K) = 0.0114 \ 6; \ \alpha(L) = 0.00155 \ 4; \alpha(M) = 0.000317 \ 6; \ \alpha(N+) = 7.64 \times 10^{-5} \ 17 \alpha(N) = 6.68 \times 10^{-5} \ 14; \ \alpha(O) = 9.18 \times 10^{-6} \ 25; \alpha(P) = 4.28 \times 10^{-7} \ 25 Extra (65.2.2 in (\alpha, 4m))$
		1088.9 <i>3</i>	50 <i>13</i>	866.5	(15/2 ⁻)	(E2)		0.001427 20	B(E2)(W.u.)>0.00041 α (K)=0.001230 18; α (L)=0.0001578 23; α (M)=3.22×10 ⁻⁵ 5; α (N+)=7.77×10 ⁻⁶ α (N)=6.79×10 ⁻⁶ 10; α (O)=9.41×10 ⁻⁷ 14; α (P)=4.56×10 ⁻⁸ 7 E=1092.0 2, Iy=55 4 in (α ,4n γ).
1981.56	1/2,3/2	1800.1 [‡] 6	33 11	180.92	3/2+				
		1842.2 [‡] 6	50 11	138.96	$(3/2)^+$				
		1915.3 [‡] 6	50 17	66.09	$(5/2)^+$				

From ENSDF

 $^{127}_{55}\mathrm{Cs}_{72}$ -7

 $^{127}_{55}\mathrm{Cs}_{72}$ -7

 $^{127}_{55}\mathrm{Cs}_{72}$ -8

Adopted	Levels,	Gammas	(continued)	

$\gamma(^{127}Cs)$ (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	Iγ	E_f	J_f^{π}	Mult. ^C	δ^{c}	α^{d}	Comments
1981.56	1/2,3/2	1981.8 [‡] 3	100 11	0.0	1/2+				
2089.7	1/2,3/2	1511.2 [‡] 10	77 8	578.0?					
		1522.0 [‡] 7	46 8	567.62	1/2,3/2				
		1950.8 [‡] 6	85 15	138.96	$(3/2)^+$				
		2089.8 [‡] 4	100 15	0.0	$1/2^{+}$				
2094.2	(13/2 ⁻)	963.2 <i>3</i>	100	1131.0	(11/2+)	(E1+(M2))	0.00 3	0.000775 12	$\alpha(K)=0.000673 \ 11; \ \alpha(L)=8.20\times10^{-5} \ 13; \ \alpha(M)=1.66\times10^{-5} \ 3; \ \alpha(N+)=4.03\times10^{-6} \ 7 \ \alpha(N)=3.51\times10^{-6} \ 6; \ \alpha(O)=4.90\times10^{-7} \ 8; \ \alpha(P)=2.45\times10^{-8} \ 4 \ Mult.: Mixing ratio is obtained by \ \gamma(\theta) in \ (H \ xnc)$
2096.9	(19/2)+	773.1 3	100	1323.8	(15/2+)	(E2)		0.00307 5	B(E2)(W.u.)>0.0067 α (K)=0.00263 4; α (L)=0.000354 5; α (M)=7.25×10 ⁻⁵ 11; α (N+)=1.743×10 ⁻⁵ 25 α (N)=1.524×10 ⁻⁵ 22; α (O)=2.09×10 ⁻⁶ 3; α (P)=9.68×10 ⁻⁸ 14 E ₂ : 774 5 2 in (α 4ny)
2104.8	(17/2+)	788.6 3	100	1316.1	(13/2+)	(E2)		0.00293 5	$\alpha(K)=0.00251 \ 4; \ \alpha(L)=0.000337 \ 5; \alpha(M)=6.89\times10^{-5} \ 10; \ \alpha(N+)=1.659\times10^{-5} \ 24 \alpha(N)=1.450\times10^{-5} \ 21; \ \alpha(O)=1.99\times10^{-6} \ 3; \alpha(P)=9.25\times10^{-8} \ 13 Mult.: possible stretched E2 but not confirmed in (HI,xny).$
2117.5	$(21/2^{-})$	625.42 ^a 19	100 8	1492.3	$(17/2^-, 19/2^-)$				E_{γ} : unresolved doublet in (HI,xn γ).
		659.2 ^{<i>a</i>} 3	100 8	1458.2	(19/2 ⁻)	(M1+E2)	-0.70 5	0.00563 10	$\begin{array}{l} \alpha_{\gamma} : 29\ 2\ \text{In}\ (\alpha, \text{Alry}).\\ \alpha(\text{K}) = 0.00484\ 9;\ \alpha(\text{L}) = 0.000627\ 10;\\ \alpha(\text{M}) = 0.0001281\ 20;\ \alpha(\text{N}+) = 3.10 \times 10^{-5}\ 5\\ \alpha(\text{N}) = 2.70 \times 10^{-5}\ 5;\ \alpha(\text{O}) = 3.76 \times 10^{-6}\ 6;\\ \alpha(\text{P}) = 1.84 \times 10^{-7}\ 4 \end{array}$
2143.8	1/2,3/2	1576.3 [‡] 10	100 20	567.62	1/2,3/2				
01(7.1	(17/0+)	1962.8 8	100 20	180.92	$3/2^+$				
2167.1	$(1/2^{+})$	379 I 725 I	<100 100	1/8/.9	$(15/2^+)$ $(13/2^+)$				
2202.5	(15/2 ⁻)	108.3 3	100	2094.2	(13/2 ⁻)	(M1+(E2))	-1.5 15	1.2 5	$\alpha(K)=0.84\ 23;\ \alpha(L)=0.28\ 20;\ \alpha(M)=0.06\ 5;\ \alpha(N+)=0.014\ 10$ $\alpha(N)=0.012\ 9;\ \alpha(O)=0.0015\ 10;\ \alpha(P)=2.59\times10^{-5}\ 18$
2238.5	1/2.3/2	2057.0 [‡] 6	91 <i>18</i>	180.92	3/2+				
0	-, -, -, -, -	2100.3 [‡] 5	100 18	138.96	$(3/2)^+$				
2238.5	1/2,3/2	$2057.0^{\ddagger} 6$ $2100.3^{\ddagger} 5$	91 <i>18</i> 100 <i>18</i>	180.92 138.96	3/2 ⁺ (3/2) ⁺				$\alpha(N)=0.012 \ 9; \ \alpha(O)=0.0015 \ 10; \ \alpha(P)=2.59\times 10^{-10}$

					A	dopted Leve	els, Gamn	nas (continued)	
						$\gamma(^{12})$	⁷ Cs) (cont	inued)	
E _i (level)	\mathbf{J}_i^π	E_{γ}^{\dagger}	I_{γ}	\mathbf{E}_{f}	J_f^π	Mult. ^C	δ^{C}	α^{d}	Comments
2238.5	1/2,3/2	2172.0 [‡] 6	100 18	66.09	$(5/2)^+$				
		2238.1 [‡] 10	36 9	0.0	$1/2^{+}$				
2255.6	1/2,3/2	2075.0 [‡] 6	100 22	180.92	3/2+				
		2189.0 [‡] 7	33 11	66.09	$(5/2)^+$				
2258.3	(23/2 ⁻)	800.2 3	100	1458.2	(19/2 ⁻)	E2		0.00283 4	B(E2)(W.u.)>0.0057 α (K)=0.00243 4; α (L)=0.000325 5; α (M)=6.64×10 ⁻⁵ 10; α (N+)=1.599×10 ⁻⁵ 23 α (N)=1.398×10 ⁻⁵ 20; α (O)=1.92×10 ⁻⁶ 3; α (P)=8.94×10 ⁻⁸ 13 E _Y : 801.5 2 in (α .4ny).
2321.19	$1/2^+, 3/2^+$	1448.8 [‡] 5	20 5	872.5	1/2,3/2				
		1753.6 [‡] 3	100 15	567.62	1/2,3/2				
		2141.0 [‡] 8	15 5	180.92	$3/2^{+}$				
		2182.0 [‡] 3	90 10	138.96	$(3/2)^+$				
		2321.2 [‡] 5	60 10	0.0	$1/2^{+}$				
2440.3	(17/2 ⁻)	237.8 3	<100	2202.5	(15/2 ⁻)	(M1+E2)	-1.1 7	0.088 5	$\alpha(K)=0.0727 \ 19; \ \alpha(L)=0.0122 \ 23; \ \alpha(M)=0.0025 \ 5; \ \alpha(N+)=0.00060 \ 11 \ \alpha(N)=0.00053 \ 10; \ \alpha(O)=7.0\times10^{-5} \ 11; \ \alpha(P)=2.58\times10^{-6} \ 14$
2578.0	(19/2+)	346 <i>1</i> 411 <i>1</i> 790 <i>1</i>	<100 <100 <100	2094.2 2167.1 1787 9	$(13/2^{-})$ $(17/2^{+})$ $(15/2^{+})$				
2639.1	(23/2 ⁻)	522.2 3	46 9	2117.5	$(13/2^{-})$ $(21/2^{-})$	(M1+E2)	-0.9 3	0.0097 5	α (K)=0.0083 5; α (L)=0.00112 4; α (M)=0.000230 7; α (N+)=5.54×10 ⁻⁵ 18
									$\alpha(N)=4.84\times10^{-5}$ 15; $\alpha(O)=6.67\times10^{-6}$ 24; $\alpha(P)=3.14\times10^{-7}$ 21
		682.4 <i>3</i>	100 9	1956.3	(19/2 ⁻)	(E2)		0.00416 6	$\alpha(\mathbf{K})=0.00355 \ 5; \ \alpha(\mathbf{L})=0.000488 \ 7; \ \alpha(\mathbf{M})=0.0001002 \ 14; \\ \alpha(\mathbf{N}+)=2.40\times10^{-5} \ 4 \\ \alpha(\mathbf{N})=2.10\times10^{-5} \ 3; \ \alpha(\mathbf{O})=2.87\times10^{-6} \ 4; \ \alpha(\mathbf{P})=1.299\times10^{-7} \\ 10 \\ \alpha(\mathbf{N})=0 \\ \alpha(\mathbf{N})=$
									E_{γ} : 683.6 2 in (α ,4n γ).
		1180 <i>I</i>	<27	1458.2	(19/2 ⁻)	(E2)		0.001211 17	$\alpha(K)=0.001041 \ I5; \ \alpha(L)=0.0001324 \ I9; \ \alpha(M)=2.70\times10^{-5} \ 4; \ \alpha(N+)=1.083\times10^{-5}$
									α (N)=5.69×10 ⁻⁶ 8; α (O)=7.91×10 ⁻⁷ 12; α (P)=3.86×10 ⁻⁸ 6; α (IPF)=4.30×10 ⁻⁶ 12
2691.0	(21/2+)	888.9 <i>3</i>	100	1802.1	(17/2 ⁺)	(E2)		0.00222 4	$\alpha(K)=0.00191 \ 3; \ \alpha(L)=0.000251 \ 4; \ \alpha(M)=5.14\times10^{-5} \ 8; \\ \alpha(N+)=1.239\times10^{-5} \ 18 \\ \alpha(N)=1.082\times10^{-5} \ 16; \ \alpha(O)=1.492\times10^{-6} \ 21; \\ \alpha(P)=7.06\times10^{-8} \ 10 $

 $^{127}_{55}$ Cs₇₂-9

					A	dopted Leve	els, Gamm	as (continued)		
$\gamma(^{127}Cs)$ (continued)										
E _i (level)	\mathbf{J}_i^π	E_{γ}^{\dagger}	I_{γ}	\mathbf{E}_{f}	\mathbf{J}_{f}^{π}	Mult. ^C	δ^{c}	α^{d}	Comments	
2696.8	(19/2-)	256.4 3	<100	2440.3	(17/2 ⁻)	(M1+E2)	-1.0 7	0.0698 24	$\alpha(K)=0.0581 \ 9; \ \alpha(L)=0.0093 \ 15; \ \alpha(M)=0.0019 \ 4; \ \alpha(N+)=0.00046 \ 8 \ \alpha(N)=0.00040 \ 7; \ \alpha(O)=5.4\times10^{-5} \ 7; \ \alpha(P)=2.10\times10^{-6} \ 14$	
2747.8	(19/2+)	495 <i>I</i> 642 <i>^f 1</i> 1255.5 <i>3</i>	<100 <67 <100	2202.5 2104.8 1492.3	(15/2 ⁻) (17/2 ⁺) (17/2 ⁻ ,19/2 ⁻)	(E1)		0.000535 8	$\alpha(K)=0.000414\ 6;\ \alpha(L)=5.00\times10^{-5}\ 7;\ \alpha(M)=1.013\times10^{-5}$ $15;\ \alpha(N+)=6.09\times10^{-5}\ 9$ $\alpha(N)=2.14\times10^{-6}\ 3;\ \alpha(O)=2.99\times10^{-7}\ 5;\ \alpha(P)=1.510\times10^{-8}$	
2897.6	(21/2+)	150 <i>1</i> 792 <i>1</i>	<3 <100	2747.8 2104.8	(19/2 ⁺) (17/2 ⁺)	(E2)		0.00290 5	22; $\alpha(\text{IPF})=5.84 \times 10^{-5} \ 9$ E_{γ} : unresolved doublet in (HI,xn γ). $\alpha(\text{K})=0.00248 \ 4$; $\alpha(\text{L})=0.000333 \ 5$; $\alpha(\text{M})=6.82 \times 10^{-5} \ 10$; $\alpha(\text{N}+)=1.641 \times 10^{-5} \ 24$ $\alpha(\text{N})=1.435 \times 10^{-5} \ 21$; $\alpha(\text{O})=1.97 \times 10^{-6} \ 3$; $\alpha(\text{P})=9.15 \times 10^{-8}$	
2935.7	(25/2 ⁻)	941 <i>1</i> 1440 <i>1</i> 677.7 <i>4</i>	<100 <100 72 14	1956.3 1458.2 2258.3	(19/2 ⁻) (19/2 ⁻) (23/2 ⁻)	(M1+E2)	-1.1 8	0.0049 8	13 $\alpha(K)=0.0042\ 7;\ \alpha(L)=0.00056\ 7;\ \alpha(M)=0.000114\ 13;$ $\alpha(N+)=2.7\times10^{-5}\ 3;\ \alpha(O)=3.3\times10^{-6}\ 4;\ \alpha(P)=1.6\times10^{-7}\ 3$ $\Gamma_{\rm ex}(5^{-7})=2.4\times10^{-5}\ 3;\ \alpha(O)=3.3\times10^{-6}\ 4;\ \alpha(P)=1.6\times10^{-7}\ 3$	
		818.0 <i>3</i>	100 14	2117.5	(21/2 ⁻)	(E2)		0.00269 4	E _y : 078.4 2 In (α ,4hy). Mult.: M1,E2 in (α ,4hy). B(E2)(W.u.)>0.0030 α (K)=0.00231 4; α (L)=0.000307 5; α (M)=6.29×10 ⁻⁵ 9; α (N+)=1.515×10 ⁻⁵ 22 α (N)=1.324×10 ⁻⁵ 19; α (O)=1.82×10 ⁻⁶ 3; α (P)=8.50×10 ⁻⁸ 12	
2959.8 3000.2	(23/2+)	855 <i>1</i> 903.4 <i>3</i>	100 100	2104.8 2096.9	(17/2 ⁺) (19/2) ⁺	(E2)		0.00214 3	$E_{\gamma}: 819.8 \ 2 \text{ in } (\alpha, 4n\gamma).$ $B(E2)(W.u.) > 0.0031$ $\alpha(K) = 0.00184 \ 3; \ \alpha(L) = 0.000242 \ 4; \ \alpha(M) = 4.94 \times 10^{-5} \ 7;$ $\alpha(N+) = 1.192 \times 10^{-5} \ 17$ $(D) = 1.492 \times 10^{-5} \ 17$	
3002.4	(23/2+)	905.5 <i>3</i>	100	2096.9	(19/2)+	(E2)		0.00213 <i>3</i>	$\alpha(N)=1.042\times10^{-5} 13; \ \alpha(O)=1.43'\times10^{-6} 21; \\ \alpha(P)=6.81\times10^{-8} 10 \\ E_{\gamma}: 904.5 2 \text{ in } (\alpha,4n\gamma). \\ B(E2)(W.u.)>0.0031 \\ \alpha(K)=0.00183 3; \ \alpha(L)=0.000241 4; \ \alpha(M)=4.92\times10^{-5} 7; \\ \alpha(N+)=1.186\times10^{-5} 17 \\ \alpha(N)=1.036\times10^{-5} 15; \ \alpha(O)=1.429\times10^{-6} 20; \\ \alpha(P)=6.77\times10^{-8} 10 \\ E_{\gamma}: 907.4 2 \text{ in } (\alpha,4n\gamma). \\ \end{array}$	

L

$\gamma(^{127}Cs)$ (continued)

E _i (level)	\mathbf{J}_i^π	${\rm E_{\gamma}}^{\dagger}$	I_{γ}	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult. ^C	δ^{C}	α^{d}	Comments
3008.4	(21/2-)	311.7 3	<100	2696.8 (19/2-)			
		568 1	<100	2440.3 (17/2-)			
3018.0	$(21/2^{+})$	440 <i>I</i> 851 <i>I</i>	<100 <100	2578.0 (19/2))			
3061.2	(23/2+)	163.6 <i>1</i>	100	2897.6 (21/2+) (M1+E2)	-1.5 15	0.30 8	α (K)=0.23 4; α (L)=0.05 3; α (M)=0.011 6; α (N+)=0.0026 13
								α (N)=0.0023 <i>12</i> ; α (O)=0.00028 <i>13</i> ; α (P)=7.67×10 ⁻⁶ <i>12</i>
3062?		956 ^f 1	100	2104.8 (17/2+)			
3156.8	(27/2 ⁻)	220.8 3	42 8	2935.7 (25/2-) (M1+E2)	+0.28 3	0.1015	$\alpha(K)=0.0866 \ 13; \ \alpha(L)=0.01186 \ 22; \ \alpha(M)=0.00243 \ 5; \ \alpha(N+)=0.000587 \ 11$
								α (N)=0.000513 <i>10</i> ; α (O)=7.07×10 ⁻⁵ <i>12</i> ; α (P)=3.34×10 ⁻⁶ 5
		898.5 <i>3</i>	100 8	2258.3 (23/2-) (E2)		0.00217 3	B(E2)(W.u.)>0.0022
								$\alpha(K)=0.00186 \ 3; \ \alpha(L)=0.000245 \ 4; \ \alpha(M)=5.01\times10^{-5} \ 7;$
								$\alpha(N=1.055\times10^{-5} l_{5}; \alpha(O)=1.455\times10^{-6} 2l_{5}; \alpha(O)=1.45\times10^{-6} 2l_{5}; \alpha(O)=1.4\times10^{-6} 2l_{5}; \alpha(O)=1.4\times10^{-6} 2l_{5}; \alpha(O)=1.4\times10^{-6} 2l_{5}; \alpha(O)=1.4\times1$
								$\alpha(P) = 6.89 \times 10^{-8} \ 10$
	(0.5.(0.1.)		100.00					E_{γ} : 900.6 2 in $(\alpha, 4n\gamma)$.
3261.9	(25/2+)	201 3	100 33	3061.2 (23/2+) M1(+E2)	-0.14 18	0.130 7	$\alpha(K)=0.111$ 5; $\alpha(L)=0.0148$ 12; $\alpha(M)=0.0030$ 3; $\alpha(N+)=0.00073$ 6
		250 500 17	100.22	2002 4 (22/2+		076	0.0777 10	α (N)=0.00064 6; α (O)=8.9×10 ⁻⁵ 7; α (P)=4.33×10 ⁻⁶ 20
		259.504 17	100 33	3002.4 (23/2)) (M1+E2)	-0.76	0.0666 18	$\alpha(K)=0.0561 \ 8; \ \alpha(L)=0.0084 \ 11; \ \alpha(M)=0.00173 \ 24; \ \alpha(N+)=0.00041 \ 6$
		$2(2,0)^{(2)}$	100.22	2000 2 (22/2+	(M1 + E2)	10.0	0.0655.21	$\alpha(N)=0.000365; \alpha(O)=4.9\times10^{-5}5; \alpha(P)=2.08\times10^{-6}11$
		262.04 0	100 33	3000.2 (23/2*) (M1+E2)	-1.0 8	0.0655 21	$\alpha(\text{K})=0.0546$ 9; $\alpha(\text{L})=0.0087$ 7; $\alpha(\text{M})=0.0018$ 4; $\alpha(\text{N}+)=0.00043$ 7
2252.9	$(25/2^{+})$	202 5 2	100.20	2061 2 (22/2+	(M1 + E2)	0 22 20	0.0475	$\alpha(N)=0.00038$ 7; $\alpha(O)=5.0\times10^{-3}$ 7; $\alpha(P)=1.97\times10^{-6}$ 15 $\alpha(K)=0.0407$ 7; $\alpha(L)=0.00528$ 10; $\alpha(M)=0.00110$ 4;
5555.0	(23/2)	292.3 3	100 20	5001.2 (25/2) (M1+E2)	-0.23 20	0.0475	$\alpha(\mathbf{N})=0.04077, \alpha(\mathbf{L})=0.0033879, \alpha(\mathbf{M})=0.001104, \alpha(\mathbf{N}+)=0.0002669$
								α (N)=0.000233 8; α (O)=3.23×10 ⁻⁵ 9; α (P)=1.58×10 ⁻⁶ 4
		354 1	<40	3000.2 (23/2+)			_
3365.8	(27/2 ⁻)	726.8 3	100 13	2639.1 (23/2-) (E2)		0.00356 5	$\alpha(K)=0.00304 5; \alpha(L)=0.000414 6; \alpha(M)=8.49\times10^{-5} 12; \alpha(N+)=2.04\times10^{-5} 3$
								α (N)=1.78×10 ⁻⁵ 3; α (O)=2.44×10 ⁻⁶ 4; α (P)=1.118×10 ⁻⁷ 16
		1107 <i>I</i>		2258.3 (23/2-) (E2)		0.001379 20	$\begin{aligned} &\alpha(\mathrm{K}) = 0.001188 \ 17; \ \alpha(\mathrm{L}) = 0.0001522 \ 22; \ \alpha(\mathrm{M}) = 3.10 \times 10^{-5} \\ &5; \ \alpha(\mathrm{N}+) = 8.02 \times 10^{-6} \\ &\alpha(\mathrm{N}) = 6.54 \times 10^{-6} \ 10; \ \alpha(\mathrm{O}) = 9.08 \times 10^{-7} \ 13; \end{aligned}$
2260 0			100		、 、			α (P)=4.41×10 ⁻⁸ 7; α (IPF)=5.25×10 ⁻⁷ 21
3369.8		361.6 3	100	3008.4 (21/2-)			

$\gamma(^{127}Cs)$ (continued)

E _i (level)	\mathbf{J}_i^π	E_{γ}^{\dagger}	I_{γ}	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult. ^C	δ^{C}	α^{d}	Comments
3369.8		672 1	100	2696.8 (19/2-))			
3563.6	$(27/2^+)$	301.75 ^{<i>a</i>} 23	100	3261.9 (25/2+)) (M1+E2)	-0.24 17	0.0437	α (K)=0.0375 6; α (L)=0.00495 14; α (M)=0.00101 3;
								$\alpha(N+)=0.000245 /$
		C						$\alpha(N)=0.000214$ 6; $\alpha(O)=2.97\times10^{-5}$ 7; $\alpha(P)=1.45\times10^{-6}$ 4
		562 ^J 1		3000.2 (23/2+))			E_{γ} : from author's level scheme in (HI,xn γ).
3645.8	$(27/2^+)$	292 1		3353.8 (25/2+)				
3647.0		956 7	100	2691.0 (21/2*))			
3766.0		396.2 3	<100	3309.8				
2015 6	$(20/2^{-})$	/5/ I 659 I	<100	3008.4 (21/2)	(M1+E2)		0.0054.0	$\alpha(\mathbf{K}) = 0.0046$ 8: $\alpha(\mathbf{L}) = 0.00061$ 7: $\alpha(\mathbf{M}) = 0.000124$ 14:
3813.0	(29/2)	038 1	<07	5150.8 (27/2)	(M1+E2)		0.0034 9	$\alpha(\mathbf{K})=0.0040$ 8; $\alpha(\mathbf{L})=0.00001$ 7; $\alpha(\mathbf{M})=0.000124$ 14; $\alpha(\mathbf{N}+)=3.0\times10^{-5}$ 4
								$\alpha(N)=2.6\times10^{-5}$ 3: $\alpha(O)=3.6\times10^{-6}$ 5: $\alpha(P)=1.7\times10^{-7}$ 4
		880.1 <i>3</i>	100 33	2935.7 (25/2-)	(E2)		0.00228 4	$\alpha(K)=0.00195 \ 3; \ \alpha(L)=0.000257 \ 4; \ \alpha(M)=5.26\times10^{-5} \ 8;$
								$\alpha(N+)=1.269\times10^{-5}$ 18
								$\alpha(N)=1.109\times10^{-5}$ 16: $\alpha(O)=1.528\times10^{-6}$ 22: $\alpha(P)=7.21\times10^{-8}$
								11
3913.7	$(29/2^+)$	350.2 <i>3</i>	100 25	3563.6 (27/2+)	(M1+E2)	-0.7 6	0.0288 11	$\alpha(K)=0.0245 \ 12; \ \alpha(L)=0.00342 \ 13; \ \alpha(M)=0.00070 \ 3;$
								α (N+)=0.000169 6
								α (N)=0.000148 6; α (O)=2.02×10 ⁻⁵ 4; α (P)=9.2×10 ⁻⁷ 8
		651 <i>I</i>	<50	3261.9 (25/2+))			
3984.2		983 <i>5</i> 1	100	3002.4 (23/2+))			
4036.8		391 <i>1</i>	100	3645.8 (27/2+))			
4101.3	$(31/2^{-})$	287 1	<34	3815.6 (29/2-)) (M1+E2)		0.0500 9	α (K)=0.0419 <i>13</i> ; α (L)=0.0065 <i>9</i> ; α (M)=0.00134 <i>20</i> ;
								$\alpha(N+)=0.00032.5$
								$\alpha(N)=0.00028$ 4; $\alpha(O)=3.7\times10^{-5}$ 4; $\alpha(P)=1.53\times10^{-6}$ 15
		944.4 <i>3</i>	100 17	$3156.8 (2^{\prime}/2^{-})$) (E2)		0.00194 3	$\alpha(K)=0.001669\ 24;\ \alpha(L)=0.000218\ 3;\ \alpha(M)=4.45\times10^{-5}\ 7;$
								$\alpha(N+)=1.0/4\times10^{-5}$ 15
								$\alpha(N) = 9.38 \times 10^{-6} \ 14; \ \alpha(O) = 1.296 \times 10^{-6} \ 19; \ \alpha(P) = 6.18 \times 10^{-6}$
4175 3		810 ^e 1		3365 8 (27/2-)				У
1110.0		1018 /	100	3156.8 (27/2))			
4305.2	$(31/2^+)$	391.6.3	100	3913.7 (29/2+)	(M1+E2)	-0.6.3	0.0215 7	$\alpha(K)=0.0184$ 7; $\alpha(L)=0.00249$ 4; $\alpha(M)=0.000510$ 8;
	(= -/ -)			(()			$\alpha(N+)=0.0001230$ 18
								$\alpha(N)=0.0001075 \ 16; \ \alpha(O)=1.481\times 10^{-5} \ 23; \ \alpha(P)=7.0\times 10^{-7} \ 4$
		741 <i>1</i>	<67	3563.6 (27/2+))			
4391.8		355 1	100	4036.8				
4640.4	$(33/2^{-})$	539 <i>1</i>	<100	4101.3 (31/2-)	(M1+E2)		0.0089 12	$\alpha(K)=0.0076 \ 11; \ \alpha(L)=0.00102 \ 9; \ \alpha(M)=0.000209 \ 16;$
								α (N+)=5.0×10 ⁻⁵ 5
								α (N)=4.4×10 ⁻⁵ 4; α (O)=6.1×10 ⁻⁶ 6; α (P)=2.8×10 ⁻⁷ 5
		825 1	<100	3815.6 (29/2-)				

$\gamma(^{127}Cs)$ (continued)

E:(level)	I^{π}	E.,†	L	Ēr	I^{π}	Mult. ^C	α^d	Comments					
	i	Ξγ	29		^o f								
4724.0		419 1	<100	4305.2	$(31/2^+)$								
		810 ^e 1	<100	3913.7	$(29/2^+)$								
4954.4	(35/2-)	314 1	<100	4640.4	(33/2 ⁻)	(M1+E2)	0.0385 12	$\alpha(K)=0.0324 \ 17; \ \alpha(L)=0.0049 \ 5; \ \alpha(M)=0.00101 \ 11; \ \alpha(N+)=0.000240 \ 23 \\ \alpha(N)=0.000211 \ 21; \ \alpha(O)=2.83\times10^{-5} \ 19; \ \alpha(P)=1.19\times10^{-6} \ 14$					
		853 1	<100	4101.3	(31/2 ⁻)	(E2)	0.00244 4	α (K)=0.00210 3; α (L)=0.000278 4; α (M)=5.68×10 ⁻⁵ 9; α (N+)=1.368×10 ⁻⁵ 20 α (N)=1.195×10 ⁻⁵ 17; α (O)=1.646×10 ⁻⁶ 24; α (P)=7.74×10 ⁻⁸ 11					
5179.1		455 <i>1</i>	<100	4724.0									
		874 <i>1</i>	<100	4305.2	$(31/2^+)$								
5187.3		1012 <i>I</i>	100	4175.3									
5535.4		581 <i>I</i>		4954.4	$(35/2^{-})$								
		895 1	100	4640.4	$(33/2^{-})$								
5865.4		330 1	100	5535.4									
		911 <i>1</i>		4954.4	$(35/2^{-})$								
* 5 (1													
From (F	$HI, xn\gamma), un$	less otherw	use noted.										
⁺ From ¹²	β^{+} Ba β^{+} de	cay.											
# Weighte	ed av from	¹² /Ba β^+ c	lecay, 1270	Cs IT deca	ay, $(\alpha, xn\gamma)$), and (HI,xn	ıγ).						
[@] Weighte	ed av from	127 Ba β^+ c	lecay, ¹²⁷ (Cs IT deca	ay, and (α)	$(4n\gamma)$.							
& Weighte	ed av from	IT decay a	nd $(\alpha, 4n\gamma)$	[']).									
^a Weighte	ed av from	$(\alpha.4n\gamma)$ and	d (HI.xnγ).									
^b Doubly	placed but	intensity n	ot divided	Í.									
^c From (H	$H xn\gamma$) un	less otherw	ise noted	RUL also	n is used f	for γ 's from	levels with th	e half-life given					
d Total theoretical internal conversion coefficients, calculated using the Price code (2008/107) with Erezon orbital approximation based on α travelengthic calculated using the Price code (2008/107) with Erezon orbital approximation based on α travelengthic calculated using the Price code (2008/107) with Erezon orbital approximation based on α travelengthic calculated using the Price code (2008/107) with Erezon orbital approximation based on α travelengthic calculated using the Price code (2008/107) with Erezon orbital approximation based on α travelengthic calculated using the Price code (2008/107) with Erezon orbital approximation based on α travelengthic calculated using the Price code (2008/107) with Erezon orbital approximation based on α travelengthic calculated using the Price code (2008/107) with Erezon orbital approximation based on α travelengthic calculated using the Price code (2008/107) with Erezon orbital approximation based on α travelengthic calculated using the Price code (2008/107) with Erezon orbital approximation based on α travelengthic calculated using the Price code (2008/107) with Erezon orbital approximation based on α travelengthic calculated using the Price code (2008/107) with Erezon orbital approximation based on α travelengthic calculated (2008/107) with Erezon orbital approximation based on α travelengthic calculated (2008/107) with Erezon orbital approximation based on α travelengthic calculated (2008/107) with Erezon orbital approximation based on α travelengthic calculated (2008/107) with Erezon orbital approximation based on α travelengthic calculated (2008/107) with Erezon orbital approximation based on α travelengthic calculated (2008/107) with Erezon orbital approximation based on α travelengthic calculated (2008/107) with Erezon orbital approximation based on α travelengthic calculated (2008/107) with Erezon orbital approximation based on α travelengthic calculated (2008/107) with Erezon orbital approximation based on α travelen													
multipologities, and mixing ratios, unless otherwise specified													
multipolarities, and mixing ratios, unless otherwise specified.													
^e Multiply	^e Multiply placed.												

^{*f*} Placement of transition in the level scheme is uncertain.

Level Scheme

Intensities: Relative photon branching from each level

Legend

 $--- \rightarrow \gamma$ Decay (Uncertain)

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

 $^{127}_{55}Cs_{72}$

Level Scheme (continued)

Intensities: Relative photon branching from each level

¹²⁷₅₅Cs₇₂

Level Scheme (continued)

Intensities: Relative photon branching from each level

 $^{127}_{55}\mathrm{Cs}_{72}$

Level Scheme (continued)

Intensities: Relative photon branching from each level

¹²⁷₅₅Cs₇₂

¹²⁷₅₅Cs₇₂