¹²⁷Pr ε decay 1995Os03,1995Gi12

History							
Туре	Author	Citation	Literature Cutoff Date				
Full Evaluation	A. Hashizume	NDS 112, 1647 (2011)	1-Oct-2009				

Parent: ¹²⁷Pr: E=0.0; T_{1/2}=4.2 s 3; Q(ε)=7.54×10³ SY; % ε +% β ⁺ decay=100.0 ¹²⁷Pr-T_{1/2}: 7.7 s 6 (1994Se13).

1995Os03: Source produced by ⁹⁴Mo(³⁶Ar,x) E=5.4 MeV/u, mass separation; measured γ , β - γ , γ - γ . 1994Se13 is the first report of the same group.

1995Gi12: Source produced by 92 Mo, 94 Mo(40 Ca,X) E=210 MeV, mass separation; measured β -X, $\beta\gamma$, $\beta\gamma\gamma$, γ -X(t), $\gamma\gamma$ (t). The decay scheme is only partly known, the β feedings were not calculated.

¹²⁷Ce Levels

[†] From a least-squares fit to E_{γ} 's. The energy of the first (5/2⁺) state is 8.1 9 and this level is fixed for the least-squares fit, 0.9 keV were added in quadratic form on the ΔE in band(B) and band(C) (evaluator).

[‡] 1994Se13 and 1995Os03 report the 29.56 5 γ to be delayed more than 10 μ s, being not coincide with other prompt γ' s. On the other hand, 1995Gi12 report the M1 28.8 γ coincides with several γ' s, and attributed this prompt γ from (3/2⁺) to (1/2⁺) level in band(A). 1995Gi12 observe prompt γ' s which coincide with the β -rays from ¹²⁷Pr decay, and do not report any delayed γ . One of authors (T.Sekine) in 1995Os03 gave evaluator an e-mail at 2 Sept.2010. He says that, after the 1995Os03 being reported, the weak 28.8 γ is found resolved from 29.56 γ , and confirmed the 28.8 γ coincides with 674 γ and Ce K x ray. In 1997, B. Firestone proposed in ENSDF file on A=127 (added file in 1993Ki01) that the 29.56 γ is the E1 transition from 11/2⁻ level (the head of band(C)) to 5/2⁺ level (the head of band(B)). Further, evaluator notes that if 29.56 γ is E1 and is delayed more than 10 μ s, the order of BE1/BE1W becomes equal or smaller than 10⁻⁷ and this order for E1 transition is permissible from the examples in this mass region.

^(a) Band(A): π =+ band built on the ground (1/2⁺) state.

& Band(B): $\pi =+$ band built on the (5/2⁺) state.

^{*a*} Band(C): $\pi = -$ band built on the (7/2⁻) state.

[#] From Adopted Levels.

¹²⁷₅₈Ce₆₉-2

¹²⁷Pr ε decay **1995Os03,1995Gi12** (continued)

 $\gamma(^{127}\text{Ce})$

 $\mathrm{I}\gamma$ normalization: Not given as the level scheme is incomplete.

E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^π	Mult.	α^{\ddagger}	Comments
28.8 5	≈11	28.8	(3/2+)	0	(1/2+)	[M1]	6.7 4	α (L)=5.3 3; α (M)=1.11 6; α (N+)=0.287 16 α (N)=0.245 14; α (O)=0.0396 22; α (P)=0.00295 17
29.56 [@] 5	106 6	36.9	(7/2 ⁻)	7.3	(5/2+)	[E1]	1.158	α (L)=0.918 <i>14</i> ; α (M)=0.192 <i>3</i> ; α (N+)=0.0472 <i>7</i> α (N)=0.0410 <i>6</i> ; α (O)=0.00591 <i>9</i> ; α (P)=0.000256 <i>4</i>
66.0 [#] 5		271.9	(7/2+)	205.68	(5/2+)	[M1]	3.92 11	$\alpha(K)=3.34 \ 9; \ \alpha(L)=0.459 \ 13; \ \alpha(M)=0.096 \ 3; \ \alpha(N+)=0.0250 \ 7 \ \alpha(N)=0.0213 \ 6; \ \alpha(O)=0.00345 \ 10; \ \alpha(P)=0.000259 \ 7$
125.84 5	100 4	162.7	(9/2 ⁻)	36.9	(7/2 ⁻)	[M1]	0.617	$\alpha(K)=0.526\ 8;\ \alpha(L)=0.0717\ 10;\ \alpha(M)=0.01501\ 21;\ \alpha(N+)=0.00391\ 6\ \alpha(N)=0.00333\ 5;\ \alpha(O)=0.000539\ 8;\ \alpha(P)=4\ 07\times10^{-5}\ 6$
159.84 7	48.0 <i>30</i>	167.2	(7/2 ⁺)	7.3	(5/2+)	[M1]	0.316	$\alpha(\mathbf{K}) = 0.270 \ 4; \ \alpha(\mathbf{L}) = 0.0366 \ 6; \\ \alpha(\mathbf{M}) = 0.00765 \ 11; \ \alpha(\mathbf{N}+) = 0.00199 \ 3 \\ \alpha(\mathbf{N}) = 0.001698 \ 24; \ \alpha(\mathbf{O}) = 0.000275 \ 4; \\ \alpha(\mathbf{P}) = 2.08 \times 10^{-5} \ 3 $
162.53 5	30.9 <i>32</i>	325.2	(11/2 ⁻)	162.7	(9/2 ⁻)	[M1]	0.302	$\alpha(\mathbf{K})=0.257 \ 4; \ \alpha(\mathbf{L})=0.0349 \ 5; \\ \alpha(\mathbf{M})=0.00731 \ 11; \ \alpha(\mathbf{N}+)=0.00190 \ 3 \\ \alpha(\mathbf{N})=0.001621 \ 23; \ \alpha(\mathbf{O})=0.000263 \ 4; \\ \alpha(\mathbf{P})=1.99\times10^{-5} \ 3 $
176.7 [#] 5		205.68	(5/2+)	28.8	(3/2+)	[M1]	0.239	$\begin{array}{l} \alpha(\mathbf{K}) = 0.204 \; 4; \; \alpha(\mathbf{L}) = 0.0277 \; 5; \\ \alpha(\mathbf{M}) = 0.00579 \; 10; \; \alpha(\mathbf{N}+) = 0.001509 \; 25 \\ \alpha(\mathbf{N}) = 0.001285 \; 21; \; \alpha(\mathbf{O}) = 0.000208 \; 4; \\ \alpha(\mathbf{P}) = 1 \; 58 \times 10^{-5} \; 3 \end{array}$
198.79 7	11.9 23	366.0	(9/2+)	167.2	(7/2 ⁺)	[M1]	0.1734	$\alpha(K)=0.1482\ 21;\ \alpha(L)=0.0200\ 3;\alpha(M)=0.00418\ 6;\ \alpha(N+)=0.001090\ 16\alpha(N)=0.000928\ 13;\ \alpha(O)=0.0001504\ 22;\alpha(P)=1.141\times10^{-5}\ 16$
205.68 9	25.2 32	205.68	(5/2 ⁺)	0	(1/2 ⁺)	[E2]	0.1673	$\alpha(\mathbf{K})=0.1276 \ I8; \ \alpha(\mathbf{L})=0.0312 \ 5; \\ \alpha(\mathbf{M})=0.00680 \ I0; \ \alpha(\mathbf{N}+)=0.001700 \ 24 \\ \alpha(\mathbf{N})=0.001474 \ 21; \ \alpha(\mathbf{O})=0.000218 \ 3; \\ \alpha(\mathbf{P})=7.87\times10^{-6} \ II$
234.2 [#] 5		600.2	(11/2+)	366.0	(9/2+)	[M1]	0.1113 17	$\alpha(K)=0.0951 \ 15; \ \alpha(L)=0.01278 \ 20; \ \alpha(M)=0.00267 \ 4; \ \alpha(N+)=0.000696 \ 11 \ \alpha(N)=0.000593 \ 9; \ \alpha(O)=9.61\times10^{-5} \ 15; \ \alpha(D)=7.31\times10^{-6} \ 11$
243.14 7	77 12	271.9	(7/2 ⁺)	28.8	(3/2+)	[E2]	0.0959	$\alpha(K) = 0.0751 \ 11; \ \alpha(L) = 0.01638 \ 23; \alpha(M) = 0.00355 \ 5; \ \alpha(N+) = 0.000891 \ 13 \alpha(N) = 0.000771 \ 11; \ \alpha(O) = 0.0001155 \ 17; \alpha(P) = 4.78 \times 10^{-6} \ 7$
288.6 [#] 5		325.2	(11/2 ⁻)	36.9	(7/2 ⁻)	[E2]	0.0551 9	$\alpha(K)=0.0440\ 7;\ \alpha(L)=0.00869\ 14;$ $\alpha(M)=0.00187\ 3;\ \alpha(N+)=0.000472\ 8$ $\alpha(N)=0.000408\ 7;\ \alpha(O)=6.18\times10^{-5}\ 10;$ $\alpha(P)=2.89\times10^{-6}\ 5$
359.0 [#] 5		366.0	(9/2+)	7.3	(5/2+)	[E2]	0.0280	α (K)=0.0228 4; α (L)=0.00405 6; α (M)=0.000866 13; α (N+)=0.000220 4

Continued on next page (footnotes at end of table)

¹²⁷ Pr ε decay 1995Os03,1995Gi12 (continued)								
$\gamma(^{127}\text{Ce})$ (continued)								
E_{γ}^{\dagger}	I_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult.	α^{\ddagger}	Comments
								α (N)=0.000189 3; α (O)=2.91×10 ⁻⁵ 5; α (P)=1.547×10 ⁻⁶ 23
390.55 [@] 8	5.5 9	553.3	(13/2 ⁻)	162.7	(9/2 ⁻)	[E2]	0.0218	$\alpha(K)=0.0179 \ 3; \ \alpha(L)=0.00306 \ 5; \ \alpha(M)=0.000653 \ 10; \ \alpha(N+)=0.0001663 \ 24 \ \alpha(N)=0.0001429 \ 20; \ \alpha(O)=2.21\times10^{-5} \ 3; \ \alpha(P)=1.224\times10^{-6} \ 18$
431.38 9	55 4	703.3	$(5/2^+)$	271.9	$(7/2^+)$			
433.2 [#] 5		600.2	(11/2 ⁺)	167.2	(7/2+)	[E2]	0.01610	α (K)=0.01332 20; α (L)=0.00219 4; α (M)=0.000466 7; α (N+)=0.0001191 18 α (N)=0.0001022 15; α (O)=1.590×10 ⁻⁵ 23; α (P)=9 23×10 ⁻⁷ 14
543.1 5		710.2	$(7/2^+, 5/2^+)$	167.2	$(7/2^+)$			
579.31 <i>10</i> 614.31 <i>10</i> 658.51 <i>27</i>	31.0 20 13.7 <i>14</i> 14.4 <i>15</i>	742.01 777.02 821.2		162.7 162.7 162.7	(9/2 ⁻) (9/2 ⁻) (9/2 ⁻)			
672.32 27	7.1 13	997.47		325.2	$(11/2^{-})$			
674.3 [#] 5		703.3	$(5/2^+)$	28.8	$(3/2^+)$			
740.19 27	24.6 27	777.02		36.9	$(7/2^{-})$			
834.73 <i>11</i> 894.87 <i>27</i>	0.9 <i>12</i> 20.7 <i>20</i>	997.47 1057.6		162.7 162.7	$(9/2^{-})$ $(9/2^{-})$			

 † From 1995Os03, except as noted.

[‡] Theoretical conversion coefficients are calculated using BrIcc code for the multipolarity indicated.
[#] Observed by 1995Gi12 only.
[@] Observed by 1995Os03 only.

¹²⁷Pr ε decay 1995Os03,1995Gi12

¹²⁷₅₈Ce₆₉

¹²⁷₅₈Ce₆₉