¹²⁷La β^+ decay (5.1 min) 2002Sh01,1990GiZV

History								
Туре	Author	Citation	Literature Cutoff Date					
Full Evaluation	A. Hashizume	NDS 112, 1647 (2011)	1-Oct-2009					

Parent: ¹²⁷La: E=0.0; $J^{\pi}=(11/2^{-})$; $T_{1/2}=5.1 \text{ min } l$; $Q(\beta^{+})=4920 \ 28$; $\%\beta^{+} \text{ decay}=100.0$

The decay scheme is that proposed by 2002Sh01 and 1990GiZV.

2002Sh01: ^{nat}Mo+³²S, E=160 MeV, on-line mass separation; measured γ , ce, level lifetimes: $\gamma\gamma$, γX , γ (ce). 1990GiZV: ⁹²Mo, ⁹⁴Mo, ⁹⁶Mo+³⁵Cl, ³⁶Ar, ⁴⁰Ca E=5-7 MeV/u, on-line mass separation; measured γ , ce; $\gamma\gamma$, γX , γ (ce). 1981LiZK: Ce+280 MeV ³He, Ce+200 MeV p, mass separation; measured γ , K-X ray, ce; $\gamma\gamma$, γX , γ (ce).

¹²⁷Ba Levels

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	Comments
0.0#	$1/2^{+}$	12.7 min 4	
56.26 [#] 14	3/2+		
80.22 [@] 16	7/2-	1.93 s 7	$T_{1/2}$; from IT decay (2002Sh01).
81.31 ^{&} 15	$(5/2)^+$	75 ns 4	$T_{1/2}$: from $\gamma\gamma$ delayed coincidence (2002Sh01).
159.69 [@] 21	$(9/2)^{-}$	0.4 ns 2	$T_{1/2}$: from centroid shift method of γ spectrum (2002Sh01).
195.6 ^{&} 3	$(7/2)^+$		
269.6 [#] 3	$(5/2)^+$		
293.86 [@] 25	$(11/2)^{-}$		
324.3 <i>3</i>	$(7/2)^{+}$		
375.2 [#] 3	$(7/2)^+$		
416.0 ^{&} 3	$(9/2)^+$		
579.5 [@] 4	$(13/2)^{-}$		
599.4 <i>3</i>	$(9/2^+)$		
669.0 ^{&} 4	$(11/2)^+$		
715.3 6	$(0/2^{\pm})$		
728.5 4 776 9 5	$(9/2^{+})$ $(15/2^{-})$		
805.1 6	(15/2)		
832.5 4			
868.4 4	$(11/2^+)$		
876.2 4	(11/2+)		
900.5 5	$(11/2^{+})$ $(13/2^{+})$		
987.3 4	(13/2)		
991.2 <i>4</i>			
1219.0 4	$(15/2^{-})$		
1230.5 6	$(13/2^+)$		
1305.0 5			
1410.4 4			
1626 5			
1674.0 4			
1764.70 25			
1790.0 4			
1961.1 4			
2351.8 4			

[†] From a least-squares fit to E_{γ} 's assuming ΔE_{γ} =0.2 keV for low-energy γ rays (<85 keV), ΔE_{γ} =0.5 keV for others (evaluator).

[‡] From Adopted Levels.

¹²⁷La β^+ decay (5.1 min) 2002Sh01,1990GiZV (continued)

¹²⁷Ba Levels (continued)

[#] Band(A): 1/2[411]. This band corresponds to $\nu d_{3/2}$, $\Omega = 1/2$, $\alpha = \pm 1/2$, assigned by (1998De48). (Ω : The projection of particle angular momentum to the nuclear symmetry axis).

^(a) Band(B): 7/2[523]. This band corresponds to $vh_{11/2}$, $\Omega=7/2$, $\alpha=\pm 1/2$, assigned by (1998De48).

& Band(C): 5/2[402]. This band corresponds to $vd_{5/2}$), $\Omega=5/2$, $\alpha=\pm1/2$, assigned by (1998De48).

$\gamma(^{127}\text{Ba})$	l)
-	_

E_{γ}	I_{γ}^{\ddagger}	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. [†]	α #	Comments
24.0 [@] 2	1.14	80.22	7/2-	56.26	3/2+	M2	1.03×10 ³ 5	$ \begin{array}{l} \alpha(\text{L}) = 8.0 \times 10^2 \ 4; \ \alpha(\text{M}) = 183 \ 8; \\ \alpha(\text{N}+) = 45.6 \ 19 \\ \alpha(\text{N}) = 39.5 \ 17; \ \alpha(\text{O}) = 5.74 \ 24; \ \alpha(\text{P}) = 0.312 \\ 13 \end{array} $
								$\alpha(\exp)=600$ to 1600 from intensity balance of γ .
25.1 [@] 2	27.1	81.31	(5/2)+	56.26	3/2+	M1	8.19 23	$\begin{array}{l} \alpha(\text{L}) = 6.51 \ 19; \ \alpha(\text{M}) = 1.34 \ 4; \\ \alpha(\text{N}+) = 0.337 \ 10 \\ \alpha(\text{N}) = 0.289 \ 8; \ \alpha(\text{O}) = 0.0441 \ 13; \\ \alpha(\text{P}) = 0.00315 \ 9 \\ \alpha(\text{exp}) = 6.9 \ \text{to} \ 20.2 \ \text{from} \ \gamma\gamma \ \text{coin and} \\ \text{intensity balance.} \end{array}$
56.3 [@] 2	143.4	56.26	3/2+	0.0	1/2+	M1(+E2)	10 6	$\begin{array}{l} \alpha(\text{K}) \exp{=5.0 \ 4} \\ \alpha(\text{K}) = 5.0 \ 6; \ \alpha(\text{L}) = 4 \ 4; \ \alpha(\text{M}) = 0.9 \ 9; \\ \alpha(\text{N}+) = 0.22 \ 19 \\ \alpha(\text{N}) = 0.19 \ 17; \ \alpha(\text{O}) = 0.025 \ 22; \\ \alpha(\text{P}) = 0.000270 \ 23 \\ \alpha(\text{K}) \exp \text{ from X-} \gamma(316.7) \text{ coincidence} \\ \text{method.} \end{array}$
79.4 [@] 2	135.2	159.69	(9/2)-	80.22	7/2-	M1,E2	3.2 13	$\begin{array}{l} \alpha(\text{K}) \exp = 2.0 \ l \\ \alpha(\text{K}) = 2.0 \ 4; \ \alpha(\text{L}) = 0.9 \ 7; \ \alpha(\text{M}) = 0.20 \ l6; \\ \alpha(\text{N}+) = 0.05 \ 4 \\ \alpha(\text{N}) = 0.04 \ 4; \ \alpha(\text{O}) = 0.005 \ 4; \\ \alpha(\text{P}) = 0.0001067 \ 2l \end{array}$
80.2 [@] 2	0.66	80.22	7/2-	0.0	1/2+	E3	74.8 15	$\alpha(K)=11.75 \ 19; \ \alpha(L)=49.1 \ 10; \\ \alpha(M)=11.34 \ 23; \ \alpha(N+)=2.64 \ 6 \\ \alpha(N)=2.35 \ 5; \ \alpha(O)=0.297 \ 6; \\ \alpha(P)=0.000471 \ 8 \\ Additional \\ information \ 1.$
81.3 [@] 2	1.0	81.31	$(5/2)^+$	0.0	$1/2^{+}$			
91.7 [@] 5	3.3	416.0	$(9/2)^+$	324.3	$(7/2)^+$			
105.4 ^{^w} 5	9.9	375.2	$(7/2)^+$	269.6	$(5/2)^+$			
114.3 ^w 5	89.3	195.6	(7/2)+	81.31	(5/2)+	M1,E2	0.9 3	$\alpha(K)\exp=1.0 5$ $\alpha(K)=0.69 I2; \alpha(L)=0.19 I2; \alpha(M)=0.04$ $\beta; \alpha(N+)=0.010 6$ $\alpha(N)=0.009 6; \alpha(O)=0.0012 7;$ $\alpha(P)=3.81\times10^{-5} 8$
128.7 [@] 5	6.6	324.3	(7/2)+	195.6	(7/2)+	M1,E2	0.64 16	$\begin{aligned} &\alpha(K) \exp[=1.2 \ 5 \\ &\alpha(K) = 0.48 \ 7; \ \alpha(L) = 0.12 \ 7; \ \alpha(M) = 0.026 \\ &I5 \ \alpha(N+) = 0.006 \ 4 \\ &\alpha(N) = 0.005 \ 3; \ \alpha(O) = 0.0008 \ 4; \\ &\alpha(P) = 2.70 \times 10^{-5} \ 6 \end{aligned}$
134.3 [@] 5	133.3	293.86	(11/2)-	159.69	(9/2)-	M1,E2	0.55 13	α (K)exp=0.45 <i>18</i> α (K)=0.43 <i>6</i> ; α (L)=0.10 <i>6</i> ; α (M)=0.022

Continued on next page (footnotes at end of table)

¹²⁷La $β^+$ decay (5.1 min) 2002Sh01,1990GiZV (continued)

$\gamma(^{127}\text{Ba})$ (continued)

E_{γ}	I_{γ}^{\ddagger}	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^π	Mult. [†]	α #	Comments
								12; α (N+)=0.005 3 α (N)=0.0046 25; α (O)=0.0006 3; α (P)=2.39×10 ⁻⁵ 5
197.4 5 213.3 [@] 5	2.9	776.9 269.6	(15/2 ⁻) (5/2) ⁺	579.5 56.26	(13/2) ⁻ 3/2 ⁺	M1,E2	0.129 10	$\alpha(K)=0.106 \ 4; \ \alpha(L)=0.019 \ 5; \ \alpha(M)=0.0039 \ 12; \ \alpha(N+)=0.0010 \ 3 \ \alpha(N)=0.00084 \ 23; \ \alpha(O)=0.00012 \ 3; \ \alpha(P)=6.3\times10^{-6} \ 5 \ \alpha(K)\exp=0.10 \ 3 \ for \ 213.3+213.7.$
213.7 [@] 5	15.2	293.86	(11/2)-	80.22	7/2-	(E2)	0.1376 23	$\begin{aligned} &\alpha(\mathbf{K}) = 0.1078 \ I8; \ \alpha(\mathbf{L}) = 0.0236 \ 4; \\ &\alpha(\mathbf{M}) = 0.00503 \ 9; \ \alpha(\mathbf{N}+) = 0.001212 \ 21 \\ &\alpha(\mathbf{N}) = 0.001058 \ I8; \ \alpha(\mathbf{O}) = 0.0001483 \ 25; \\ &\alpha(\mathbf{P}) = 5.78 \times 10^{-6} \ 9 \\ &\alpha(\mathbf{K}) \exp = 0.10 \ 3 \ \text{for} \ 213.3 + 213.7. \end{aligned}$
220.4 [@] 5	58.1	416.0	(9/2)+	195.6	(7/2)+	M1,E2	0.117 8	$\begin{array}{l} \alpha(\text{K}) \exp = 0.097 \ 30 \\ \alpha(\text{K}) = 0.0959 \ 23; \ \alpha(\text{L}) = 0.017 \ 5; \ \alpha(\text{M}) = 0.0035 \\ 10; \ \alpha(\text{N}+) = 0.00086 \ 22 \\ \alpha(\text{N}) = 0.00075 \ 20; \ \alpha(\text{O}) = 0.000108 \ 24; \\ \alpha(\text{P}) = 5.7 \times 10^{-6} \ 5 \end{array}$
243.0 [@] 5	71.3	324.3	(7/2)+	81.31	(5/2)+	M1,E2	0.087 3	$\begin{array}{l} \alpha(\text{K}) \exp = 0.078 \ 25 \\ \alpha(\text{K}) = 0.0720 \ 13; \ \alpha(\text{L}) = 0.0120 \ 25; \\ \alpha(\text{M}) = 0.0025 \ 6; \ \alpha(\text{N}+) = 0.00062 \ 13 \\ \alpha(\text{N}) = 0.00054 \ 12; \ \alpha(\text{O}) = 7.8 \times 10^{-5} \ 14; \\ \alpha(\text{P}) = 4.3 \times 10^{-6} \ 5 \end{array}$
253.3 [@] 5	23.8	669.0	(11/2)+	416.0	(9/2)+	M1,E2	0.0770 <i>17</i>	$\alpha(K)\exp=0.087 \ 30$ $\alpha(K)=0.0638 \ 16; \ \alpha(L)=0.0105 \ 20;$ $\alpha(M)=0.0022 \ 5; \ \alpha(N+)=0.00054 \ 10$ $\alpha(N)=0.00047 \ 9; \ \alpha(O)=6.8\times10^{-5} \ 11;$ $\alpha(P)=3.9\times10^{-6} \ 4$
269.6 [@] 5	24.8	269.6	(5/2)+	0.0	1/2+	(E2)	0.0637	$\alpha(K) \exp = 0.062 \ 28$ $\alpha(K) = 0.0513 \ 8; \ \alpha(L) = 0.00982 \ 16;$ $\alpha(M) = 0.00208 \ 4; \ \alpha(N+) = 0.000505 \ 8$ $\alpha(N) = 0.000439 \ 7; \ \alpha(O) = 6.26 \times 10^{-5} \ 10;$ $\alpha(P) = 2.87 \times 10^{-6} \ 5$
275.2 5		599.4	$(9/2^+)$	324.3	$(7/2)^+$			
285.6 ^w 5	45.4	579.5	(13/2)-	293.86	(11/2)-	M1,E2	0.0540 14	$\alpha(K)\exp=0.047 \ 15$ $\alpha(K)=0.0451 \ 24; \ \alpha(L)=0.0071 \ 9;$ $\alpha(M)=0.00148 \ 21; \ \alpha(N+)=0.00037 \ 5$ $\alpha(N)=0.00032 \ 4; \ \alpha(O)=4.7\times10^{-5} \ 5;$ $\alpha(P)=2.8\times10^{-6} \ 4$
293.7 [@] 5 294.8 5 307.0 5	3.8	375.2 963.9 906.5	$(7/2)^+$ $(13/2^+)$ $(11/2^+)$	81.31 669.0 599.4	(5/2) ⁺ (11/2) ⁺ (9/2 ⁺)			
318.7 [@] 5	100.0	375.2	(7/2)+	56.26	3/2+	(E2)	0.0373	$\alpha(K)\exp=0.035 \ 10$ $\alpha(K)=0.0305 \ 5; \ \alpha(L)=0.00539 \ 9;$ $\alpha(M)=0.001136 \ 18; \ \alpha(N+)=0.000277 \ 5;$ $\alpha(N)=0.000241 \ 4; \ \alpha(O)=3.47\times10^{-5} \ 6;$ $\alpha(P)=1.75\times10^{-6} \ 3$
324.0 5 334.8 [@] 5 353.4 5 403.8 5	20.7	1230.5 416.0 728.5 599.4	(13/2 ⁺) (9/2) ⁺ (9/2 ⁺) (9/2 ⁺)	906.5 81.31 375.2 195.6	$(11/2^+)$ $(5/2)^+$ $(7/2)^+$ $(7/2)^+$			

Continued on next page (footnotes at end of table)

		$\gamma(^{127}\text{Ba})$ (continued)								
Eγ	I_{γ}^{\ddagger}	E _i (level)	\mathbf{J}_i^{π}	E_f	J_f^π	Eγ	E _i (level)	\mathbf{J}_i^{π}	E_f	J_f^π
419.9 [@] 5 428.8 5	22.0	579.5 1305.0	(13/2)-	159.69 876.2	(9/2)-	911.0 <i>5</i> 925.4 <i>5</i>	991.2 1219.0	$(15/2^{-})$	80.22 293.86	$7/2^{-}$ (11/2) ⁻
452.2 <i>5</i> 458.9 <i>5</i>		868.4 728.5	$(11/2^+)$ $(9/2^+)$	416.0 269.6	$(9/2)^+$ $(5/2)^+$	1005.8 <i>5</i> 1036.4 <i>5</i>	1674.0 1764.70	(10/2)	669.0 728.5	$(11/2)^+$ $(9/2^+)$
473.6 [@] 5 483.05	29.9	669.0 776.9	$(11/2)^+$ $(15/2^-)$	195.6 293.86	$(7/2)^+$ $(11/2)^-$	1059.1 <i>5</i> 1095.6 <i>5</i>	1219.0 1764.70	(15/2-)	159.69 669.0	$(9/2)^{-}$ $(11/2)^{+}$
490.3 <i>5</i> 493.3 <i>5</i>		906.5 868.4	$(11/2^+)$ $(11/2^+)$	416.0 375.2	$(9/2)^+$ $(7/2)^+$	1109.4 <i>5</i> 1116.4 <i>5</i>	1403.3 1410.4		293.86 293.86	$(11/2)^{-}$ $(11/2)^{-}$
518.2 5 531.4 5		599.4 906.5	$(9/2^+)$ $(11/2^+)$	81.31 375.2	$(5/2)^+$ $(7/2)^+$	1121.5 5 1165.5 5	1790.6 1764.70		669.0 599.4	$(11/2)^+$ $(9/2^+)$
543.9 5 548.0 5		868.4 963.9	$(11/2^+)$ $(13/2^+)$	324.3 416.0	$(7/2)^+$ $(9/2)^+$	1191.4 <i>5</i> 1243.7 <i>5</i>	1790.6 1403.3		599.4 159.69	$(9/2^+)$ $(9/2)^-$
555.65 582.35 58235		/15.3 876.2 906.5	$(11/2^{+})$	159.69 293.86 324.3	(9/2) $(11/2)^{-}$ $(7/2)^{+}$	1250.8 5 1298.4 5 1332 5	1410.4 1674.0 1626		159.69 375.2 293.86	(9/2) $(7/2)^+$ $(11/2)^-$
639.5 5 645.4 5		1219.0 805.1	$(11/2^{-})$ $(15/2^{-})$	579.5 159.69	$(1/2)^{-}$ $(13/2)^{-}$ $(9/2)^{-}$	1332 5 1348.9 5 1374.6 5	1764.70 1790.6		416.0 416.0	$(9/2)^+$ $(9/2)^+$
672.5 5 693.3 5		832.5 987.3		159.69 293.86	$(9/2)^{-}$ $(11/2)^{-}$	1389.2 <i>5</i> 1440.4 <i>5</i>	1764.70 1764.70		375.2 324.3	$(7/2)^+$ $(7/2)^+$
697.4 5 716 6 5		991.2 876.2		293.86 159.69	$(11/2)^{-}$ $(9/2)^{-}$	1466.2 <i>5</i> 1470 8 ^{&} 5	1790.6 1764 70		324.3 293.86	$(7/2)^+$ $(11/2)^-$
725.4 <i>5</i> 752.6 <i>5</i>		1305.0 832.5		579.5 80.22	$(13/2)^{-}$ $(13/2)^{-}$ $7/2^{-}$	1569.1 <i>5</i> 1595.0 <i>5</i>	1764.70 1790.6		195.6 195.6	$(7/2)^+$ $(7/2)^+$
795.9 <i>5</i> 805.4 <i>5</i>		876.2 1674.0		80.22 868.4	$7/2^{-}$ (11/2 ⁺)	1605.1 ^{&} 5 1667.6 5	1764.70 1961.1		159.69 293.86	$(9/2)^{-}$ $(11/2)^{-}$
827.7 <i>5</i> 831.4 <i>5</i>		987.3 991.2		159.69 159.69	$(9/2)^{-}$ $(9/2)^{-}$	1801.0 <i>5</i> 1881.0 <i>5</i>	1961.1 1961.1		159.69 80.22	(9/2) ⁻ 7/2 ⁻
858.1 5 890 5		1764.70 1881		906.5 991.2	$(11/2^+)$	2057.9 <i>5</i> 2271.6 <i>5</i>	2351.8 2351.8		293.86 80.22	(11/2) ⁻ 7/2 ⁻

¹²⁷La β^+ decay (5.1 min) 2002Sh01,1990GiZV (continued)

[†] From α(K)exp, unless otherwise noted (2002Sh01).
[‡] From 2002Sh01.
[#] Theoretical conversion coefficients are calculated using BrIcc code for the multipolarity indicated.
[@] From 2002Sh01, others are from 1990GiZV, In the latter, no intensity is given by the authors.
[&] E_γ was not given by 1990GiZV. It is calculated from level-energy difference.

¹²⁷₅₆Ba₇₁

¹²⁷La β^+ decay (5.1 min) 2002Sh01,1990GiZV

Decay Scheme (continued)

Intensities: Relative I_{γ}

¹²⁷La β^+ decay (5.1 min) 2002Sh01,1990GiZV

$\frac{127}{La} \beta^+$ decay (5.1 min) 2002Sh01,1990GiZV

