126 Sb β^- decay (12.35 d) 1975Ba17,1972Bu28

	History		
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	H. Iimura, J. Katakura, S. Ohya	NDS 180, 1 (2022)	1-Oct-2021

Parent: ¹²⁶Sb: E=0.0; $J^{\pi}=(8^{-})$; $T_{1/2}=12.35$ d 6; $Q(\beta^{-})=3670 \ 30$; $\%\beta^{-}$ decay=100.0

The decay scheme is that proposed by 1975Ba17 on the basis of $\gamma\gamma$ -coin and E γ sums.

1972Bu28: semi *γ*, *γγ*.

1972SoZQ: Te(γ ,pxn) chem;semi γ , $\gamma\gamma$.

1972Kr15: U(n,F) chem, oriented nuclei, $\gamma(\theta)$.

1974Li14: ¹²⁴Sn(α ,pn) chem; semi γ , $\gamma\gamma$. 1975Ba17: ¹²⁸Te(d, α) chem; semi γ , $\gamma\gamma$; $\gamma\gamma(\theta)$. 1975So09: ¹²⁸Te(d, α) chem; semi γ , $\gamma\gamma$; scin-scin $\beta\gamma(t)$, $\gamma\gamma(t)$.

1975Ba46: ¹²⁸Te(d, α) chem; scin-scin $\beta\gamma$ (t).

¹²⁶Te Levels

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	Comments
0.0	0^{+}	stable	
666.5 <i>3</i>	2+		
1361.5 4	4+		
1776.1 4	6+	68 ps 2	$T_{1/2}$: unweighted av of 66 ps 3 from ($\approx 600\beta$)($\approx 700\gamma$)(t) (1975Ba46) and 69 ps 2 from (1370-1500 β)(695 γ)(t) (1975So09).
2218.3 4	5-		
2396.2 6	6+		
2496.7 5	7-	0.152 ns 5	$T_{1/2}$: from $(1200\beta)(\approx 700\gamma)(t)$ (1975Ba46); other: 0.15 ns 2 from (610 <e<math>\beta<720)(695γ,720γ)(t) (1975So09).</e<math>
2514.7 5	5-		
2765.7 5	8+		
2811.6 5	(7^{-})		
2837.4 5			
2839.7 7	$(6)^+$		
2974.3 10	10^{+}		
2989.4 5	(8^{+})		
3070.8 5	5-,6,7-		
3171.4 6			
3193.7 5	9-		
3450.4 6	$6^+, 7^-$		
3473.0 9			

^{\dagger} E(levels) are based on a least-squares fit (by evaluators).

[±] Spin and parity values are those given under Adopted Levels.

 β^{-} radiations

E(decay)	E(level)	$I\beta^{-\dagger}$	Log ft		Comments
$(2.0 \times 10^2 3)$	3473.0	0.5 1	7.43 25	av Eβ=54 9	
$(2.2 \times 10^2 \ 3)$	3450.4	2.09 14	6.96 21	av Eβ=61 9	
$(4.8 \times 10^2 \ 3)$	3193.7	29 7	6.92 15	av Eβ=145 11	
$(5.0 \times 10^2 \ 3)$	3171.4	5.9 10	7.68 12	av Eβ=153 11	
$(6.0 \times 10^2 \ 3)$	3070.8	8.4 4	7.80 8	av Eβ=190 12	
$(6.8 \times 10^2 \ 3)$	2989.4	4.2 4	8.30 8	av Eβ=220 12	
$(7.0 \times 10^2 \ 3)$	2974.3	0.5 2	9.54 ¹ <i>u</i> 20	av Eβ=243 12	

Continued on next page (footnotes at end of table)

¹²⁶Sb β⁻ decay (12.35 d) 1975Ba17,1972Bu28 (continued)

β^- radiations (continued)

E(decay)	E(level)	$I\beta^{-\dagger}$	Log ft		Comments	
$(8.3 \times 10^{2} \ddagger 3)$	2839.7	0.8 7	9.7 ¹ <i>u</i> 4	av Eβ=294 12		
$(8.6 \times 10^2 \ 3)$	2811.6	8.1 6	8.37 7	av E β =289 12		
$(9.0 \times 10^2 \ 3)$	2765.7	4.9 4	8.67 7	av Eβ=307 12		
$(1.17 \times 10^3 \ 3)$	2496.7	16 8	8.57 23	av Eβ=418 <i>13</i>		
$(1.27 \times 10^3 \ 3)$	2396.2	0.9 4	10.68 ¹ <i>u</i> 21	av Eβ=471 13		
$(1.45 \times 10^3 \ 3)$	2218.3	3.0 13	9.65 20	av Eβ=537 <i>13</i>		
$(1.89 \times 10^3 \ 3)$	1776.1	20 4	10.31 ¹ <i>u</i> 10	av Eβ=734 <i>13</i>		

[†] Absolute intensity per 100 decays.
[‡] Existence of this branch is questionable.

$\gamma(^{126}\text{Te})$

Iv normalization: The evaluators assume no β^- feedings to gs, 666.5(2⁺) and 1362.1(4⁺) levels, so Iv(666.5v)=Iv(695.0v)=100.

			$\gamma\gamma(\theta)$	data					
cascade	2	A ₂	197 A ₄	5Ba17	ca	scade	A ₂	A 4	
224-990 297-857 857-696) 0. 7 0. 6 –0.	.13 5 .16 4 .04 2	-0.01 0.01 0.03	4 2 2	27 59 58	78-857 93-857 87-667	-0.10 6 -0.08 3 -0.08 2	0.10 5 0.03 3 -0.01 2	
${\rm E_{\gamma}}^{\dagger}$	Ι _γ ‡&	E _i (level)	${ m J}_i^\pi$	E_{f}	\mathbf{J}_{f}^{π}	Mult. [#]	δ [#]	α^{a}	Comments
148.7 <i>9</i> 208.6 <i>8</i>	0.4 2 0.5 2	2989.4 2974.3	(8 ⁺) 10 ⁺	2839.7 2765.7	$(6)^+$ 8 ⁺	E2		0.130 3	E_{γ} , I_{γ} : E_{γ} and RI from $\gamma\gamma$ coin. α (K)=0.1049 20; α (L)=0.0199 4; α (M)=0.00408 9 E_{γ} , I_{γ} : E_{γ} and RI from $\gamma\gamma$ coin.
223.9 7	1.4 <i>1</i>	2989.4	(8+)	2765.7	8+				
278.2 <i>3</i>	2.4 6	2496.7	7-	2218.3	5-	E2		0.0493	$\alpha(K)=0.0409$ 6; $\alpha(L)=0.00681$ 10; $\alpha(M)=0.001382$ 20
296.5 <i>3</i>	4.5 4	2514.7	5-	2218.3	5-	M1+E2	-7.0 7	0.0400	$\alpha(K)=0.03335; \alpha(L)=0.005398; \alpha(M)=0.00109216$ $\delta: -0.251 \text{ or } -5.4+20-55 \text{ in } \gamma\gamma(\theta) (1975Ba17).$
296.8	0.5 2	2811.6	(7-)	2514.7	5-				E_{γ},I_{γ} : This transition was found from $\gamma\gamma$ coin. $E\gamma$ from the difference of the level energies assigned to the transition. RI from $\gamma\gamma$ coin (1975Ba17).
414.7 2	83.6 21	1776.1	6+	1361.5	4+	E2		0.0140 5	$\alpha(K)=0.01188 \ 17; \ \alpha(L)=0.001740 \ 25; \ \alpha(M)=0.000350 \ 5 \ \alpha(K)\exp=0.015 \ (19710r04). Obtained from ratio of \alpha(K)\exp(414 \ 8\gamma) \ to \ \alpha(K)\exp(666 \ 3\gamma) \ (19710r04).$
415.3	1.0 3	2811.6	(7 ⁻)	2396.2	6+				E_{γ} , I_{γ} : This transition was found from $\gamma\gamma$ coin. $E\gamma$ from the difference of the level energies assigned to the transition. RI from $\gamma\gamma$ coin (1975Ba17)
55633	172	3070.8	5-67-	2514.7	5-				
573 9 3	673	3070.8	$5^{-}67^{-}$	2496.7	7- 7-				
593.2.3	7.5.4	2811.6	(7^{-})	2218.3	, 5 ⁻	E2		0.00511	
619.9 4	0.9 1	2396.2	6+	1776.1	6 ⁺	M1(+E2)	-0.17 + 6 - 8	0.00011	
638.8.8	0.9 1	3450.4	$6^+.7^-$	2811.6	(7^{-})		0117 10 0		
656.3 6	2.2 1	3171.4	0,,	2514.7	5-				
666.5 3	100	666.5	2+	0.0	0+	E2		0.00378 6	α (K)=0.00324 5; α (L)=0.000429 6; α (M)=8.58×10 ⁻⁵ 12 α (K)exp=0.0034 (assumed as E2 (1971Or04)).
674.8 <i>3</i>	3.7 10	3171.4		2496.7	7-				
684.7 <i>10</i>	0.9	3450.4	$6^+, 7^-$	2765.7	8+				E_{γ} , I_{γ} : from 2010Fe02.
695.0 2	100	1361.5	4+	666.5	2+	E2		0.00340 5	α (K)=0.00292 5; α (L)=0.000384 6; α (M)=7.67×10 ⁻⁵ 11 E _{γ} : from 1972Bu28. The authors of 1975Ba17 quoted E γ =694.8 2

From ENSDF

				1	¹²⁶ Sb	β^- decay (1	2.35 d)	975Ba17,197	2Bu28 (continued)
							γ ⁽¹²⁶ Te)	(continued)	
${\rm E_{\gamma}}^{\dagger}$	Ι _γ ‡&	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. [#]	δ #	α^{a}	Comments
					<u> </u>				in text from 1972SoZQ. However, there is no uncertainty of the E γ in 1972SoZQ. I γ : I γ =129 7 (Sum 695 γ and 697 γ) (1975Ba17). I γ =100 from 1972Bu28, 1972SoZQ, 1969KIZZ. From the decay scheme and α , I γ =100 is apparent and the uncertainty is negligibly small. α (K)exp(695 γ +697 γ)=0.0030 (1971Or04).
697.0 2	32 6	3193.7	9-	2496.7	7-	E2		0.00337	E_{γ} : from 1972Bu28. The authors of 1975Ba17 quoted E γ =696.7 <i>3</i> in text from 1972SoZQ. However, there is no uncertainty of the E γ in 1972SoZQ. I _{γ} : from 1969KIZZ.
720.7 <i>4</i> ^x 726 [@] 1 ^x 730.7 [@] 10	54.0 24 0.05 [@] 0.13 [@]	2496.7	7-	1776.1	6+	E1(+M2)	-0.01 3		
856.8 2 934 1 953 7 4	17.7 <i>9</i> 0.8	2218.3 3450.4 3450.4	5 ⁻ 6 ⁺ ,7 ⁻ 6 ⁺ 7 ⁻	1361.5 2514.7 2496 7	4 ⁺ 5 ⁻ 7 ⁻	E1+M2	+0.029 6		E_{γ} , I_{γ} : from 2010Fe02.
958.3 7	0.5 1	3473.0	0,7	2514.7	5-				
989.6 <i>3</i>	6.8 3	2765.7	8+	1776.1	6+	E2		1.48×10^{-3}	
1036.2 12	1.00 5	2396.2	6+	1361.5	4+	E2			
1061.3 2	0.4	2837.4		1776.1	6+				E_{γ} : from 1972Bu28. However, the authors of 1975Ba15 state
1064.4 15	0.9 6	2839.7	$(6)^{+}$	1776.1	6+				that they do not see the line in $\gamma\gamma$ com.
x1191 [@] 1	$0.27^{@}$								
1213.3 3	2.4 2	2989.4	(8^{+})	1776.1	6+	(E2)			
^x 1290 [@] 1	0.23 [@]								
1476.9 9 ^x 1589 [@] 1	$0.28 \ 3$ $0.09^{@}$	2839.7	(6)+	1361.5	4+				

[†] from 1975Ba17, unless otherwise noted.

¹ From 1975Ba17, unless otherwise noted. [#] From 1975Ba17, unless otherwise noted. [#] From Adopted Levels, gammas. [@] From 2010Fe02 with ¹²⁶Sn/¹²⁶Sb equilibrium source whitch include γ -rays from ¹²⁶Sb β^- decay (12.35 d) and ¹²⁶Sb β^- decay (19.15 M). The γ -ray could belong to either, or both decays. In each case, RI's must be corrected.

[&] For absolute intensity per 100 decays, multiply by 0.996 1.

^{*a*} Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

^x γ ray not placed in level scheme.

From ENSDF

 $^{126}_{52}$ Te₇₄-4

¹²⁶Sb β ⁻ decay (12.35 d) 1975Ba17,1972Bu28

