126 In β^- decay (1.53 s) 1979Fo10

History

Туре	Author	Citation	Literature Cutoff Date		
Full Evaluation	H. Iimura, J. Katakura, S. Ohya	NDS 180, 1 (2022)	1-Oct-2021		

Parent: ¹²⁶In: E=0.0; $J^{\pi}=3^{(+)}$; $T_{1/2}=1.53$ s *I*; $Q(\beta^{-})=8206$ *II*; $\%\beta^{-}$ decay=100.0 1979Fo10: U(n,F) on-line mass separation, chem γ , ce, $\gamma\gamma$ semi.

The decay scheme is that proposed by 1979Fo10 on the basis of $\gamma\gamma$ -coin and $E\gamma$ sums.

¹²⁶Sn Levels

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	Comments
0.0	0^{+}	2.18×10^5 v 10	Tuo: from Adopted Levels
1141.15 4	2+	2.10/(10) 10	
2049.73 7	- 4 ⁺		
2110.79.6	$2^{(+)}$		
2130.08 21	-		
2194.21 7			
2256.51 21			
2276.85 8			
2370.46 6	$2^{(+)}$		
2471.93 16			
2631.03 11			
2636.64 10	$2^{(+)}$		
2712.06 8	$2,3,4^{+}$		
2742.57 7			
2886.41 13			
3246.55 10	$2^{(+)}$		
3300.3 <i>3</i>			
3344.83 9	$2^{(+)}$		
3435.0 6	$2^{(+)}$		
3504.5 <i>3</i>	$2^{(+)}$		
3818.0 4	$2^{(+)}$		
3860.3 <i>3</i>	$2,3,4^{+}$		
3886.54 9	$2^{(+)}$		
3917.3 5	$2,3,4^{+}$		
3964.19 7	$2^{(+)}$		
4013.97 21	$2,3,4^{(+)}$		
4241.00 15	$2^{(+)}$		
4257.1 <i>3</i>	$2^{(+)}$		
4303.27 15	$2^{(+)}$		
4330.9 6	$2^{(+)}$		
4656.5 5	$2^{(+)}$		
4699.5 6	$2^{(+)}$		
4797.1 6	$2^{(+)}$		

 † Based on a least-squares fit to Ey'. ‡ Spin and parity values are those given under the Adopted Levels.

¹²⁶In β^{-} decay (1.53 s) 1979Fo10 (continued)

β^- radiations

E(decay)	E(level)	$I\beta^{-\ddagger\ddagger}$	Log <i>ft</i>	Comments
(3409 11)	4797.1	0.13 4	6.65 14	av E β =1436.8 52
(3507 11)	4699.5	0.10 3	6.82 13	av E β =1482.7 52
(3550 11)	4656.5	0.21 3	6.52 7	av E β =1503.0 52
(3875 11)	4330.9	0.13 3	6.89 10	av E β =1656.4 52
(3903 11)	4303.27	2.5 3	5.62 6	av $E\beta = 1669.552$
(3949 11)	4257.1	0.33 6	6.52 8	av E β =1691.3 52
(3965 11)	4241.00	1.50 20	5.87 6	av E β =1698.9 52
(4192 11)	4013.97	0.37 4	6.58 5	av E β =1806.2 52
(4242 11)	3964.19	9.3 4	5.206 20	av $E\beta = 1829.752$
(4289 11)	3917.3	0.38 4	6.62 5	av E β =1851.9 52
(4319 11)	3886.54	6.0 6	5.43 5	av $E\beta = 1866.452$
(4346 11)	3860.3	0.63 6	6.42 5	av E β =1878.8 52
(4388 11)	3818.0	0.35 <i>3</i>	6.69 4	av E β =1898.9 53
(4702 11)	3504.5	0.49 4	6.68 4	av E β =2047.3 53
(4771 11)	3435.0	0.29 4	6.94 6	av E β =2080.3 53
4863 27	3344.83	24.2 3	5.049 8	av E β =2123.0 53
				E(decay): from 1987Sp09.
(4906 11)	3300.3	0.31 6	6.96 9	av E β =2144.1 53
(4959 11)	3246.55	5.4 4	5.74 4	av E β =2169.6 53
(5320 11)	2886.41	0.42 8	6.98 9	av E β =2340.4 53
(5463 11)	2742.57	2.79 15	6.211 24	av E β =2408.6 53
(5494 11)	2712.06	0.59 23	6.90 17	av E β =2423.1 53
(5569 11)	2636.64	1.62 23	6.48 7	av E β =2458.9 53
(5575 11)	2631.03	0.43 4	7.06 4	av E β =2461.5 53
(5734 11)	2471.93	0.32 4	7.24 6	av E β =2537.0 53
(5836 11)	2370.46	2.1 3	6.46 7	av E β =2585.2 53
(5949 11)	2256.51	0.25 4	7.42 7	av E β =2639.2 53
(6012 11)	2194.21	0.50 4	7.14 4	av E β =2668.8 53
(6076 11)	2130.08	0.27 5	7.43 8	av E β =2699.2 53
6049 <i>94</i>	2110.79	16.4 <i>11</i>	5.65 3	av E β =2708.3 53
				E(decay): from 1987Sp09.
(6156 11)	2049.73	4.0 5	6.28 6	av E β =2737.3 53
7.12×10^3 12	1141.15	18 5	5.90 12	av E β =3168.1 53
				E(decay): from 1987Sp09.

[†] from intensity balances at each level.
[‡] Absolute intensity per 100 decays.

$$\gamma(^{126}\text{Sn})$$

I γ normalization: No β^- decay to g.s (the spin change 3⁺ to 0⁺). $\Sigma(I(\gamma+ce)$ to g.s. =100.

Eγ	$I_{\gamma}^{\#}$	E_i (level)	Eγ	$I_{\gamma}^{\#}$	E _i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f = \mathbf{J}_f^{\pi}$
^x 175.30 [†] 25	0.034 10		x433.31 [†] 20	0.11 2			
^x 212.32 [†] 10	0.13 2		^x 477.98 [†] 25	0.076 20			
^x 251.75 [†] 20	0.045 10		503.92 20	0.21 4	3246.55	$2^{(+)}$	2742.57
^x 266.08 [†] 15	0.065 15		^x 515.79 [†] 20	0.20 4			
^x 323.9 [†] 4	0.053 20		^x 525.46 [†] 15	0.13 2			
^x 402.80 [†] 20	0.10 2		^x 595.84 [†] 15	0.13 2			
^x 417.90 [†] 10	0.14 2		631.77 5	1.6 <i>1</i>	2742.57		2110.79 2 ⁽⁺⁾

Continued on next page (footnotes at end of table)

¹²⁶In β^- decay (1.53 s) 1979Fo10 (continued)

$\gamma(^{126}\text{Sn})$ (continued)

Eγ	$I_{\gamma}^{\#}$	E _i (level)	\mathbf{J}_i^{π}	E_f	J_f^π
$x708.03^{\dagger} 25$	0.15 4				
x7177 [†] 4	0.13.4				
x776 85 [†] 15	0.22 4				
908.58.5	4.3.5	2049.73	4+	1141.15	2+
x945 18 [†] 20	0.20.4				
x057 0 [†] 1	0.11 1				
960 61 5	1/ 0 10	2110 70	$\gamma^{(+)}$	11/1 15	2+
988.93 20	0.27.5	2130.08	2	1141.15	$\frac{2}{2^{+}}$
1053.06 5	0.50 4	2194.21		1141.15	$\frac{1}{2^{+}}$
1068.10 10	0.44 4	3344.83	$2^{(+)}$	2276.85	
1077.73 15	0.32 4	3964.19	$2^{(+)}$	2886.41	
1115.36 20	0.25 4	2256.51		1141.15	2+
1135.70 10	2.0 2	2276.85		1141.15	2+
1141.11 5	55.9 40	1141.15	2+	0.0	0^{+}
1174.32 10	0.31 4	3886.54	$2^{(+)}$	2712.06	2,3,4+
$^{x}1224.20^{\dagger}$ 20	0.18 4				
1229.31 5	1.7 <i>1</i>	2370.46	$2^{(+)}$	1141.15	2+
1250.52 25	0.31 6	3300.3		2049.73	4+
1252.34 10	1.7 <i>1</i>	3964.19	$2^{(+)}$	2712.06	2,3,4+
x1280.06 [†] 15	0.24 3				
1327.46 10	0.58 5	3964.19	$2^{(+)}$	2636.64	$2^{(+)}$
1330.77 15	0.32 4	2471.93		1141.15	2+
1489.87 10	0.43 4	2631.03		1141.15	2+
1495.4 ⁴ 3	1.1 [‡] 2	2636.64	$2^{(+)}$	1141.15	2^{+}
^x 1507.2 [†] 3	0.15 3				
1570.96 10	2.6 2	2712.06	2,3,4+	1141.15	2+
1593.73 10	1.1 1	3964.19	$2^{(+)}$	2370.46	$2^{(+)}$
1601.43 10	1.4 1	2/42.57	a a ((+)	1141.15	2^{+}
1643.50 20	0.37 4	4013.97	$2,3,4^{(+)}$	2370.46	2(+)
1687.20 10	2.2.2	3964.19	2(1)	22/6.85	2+
1/45.15 20	0.74 0	2880.41		1141.15	2
*2035.17 25	0.45 4	2016 55	$\mathbf{a}(\pm)$	1141 15	2+
2105.31 15	2.0 2	3246.55	$2^{(+)}$	1141.15	2'
2110.83 10	3.1 2	2110.79	2(.)	0.0	0.
2123.33 25	0.53 4	2244.02	$\mathbf{a}(\pm)$	1141 17	2+
2203.54 15	2.2.2	3344.83	$2^{(+)}$	1141.15	2
2370.41 75	1.9 2	2370.46	$2^{(+)}$	0.0	0.
2636.30 20	1.1 I	2030.04	$2^{(1)}$	0.0	0^{+}
2719.1 5	0.05 0	2000.5	2,3,4 2(+)	1141.15	2 2+
2745.50 20	$0.95\ 10$ 0.38\ 4	3017 3	2^{2}	1141.15	2 2+
2872 9 3	101	3964 19	2,3,7 $2^{(+)}$	1141.15	2+
$x_{2874} 0^{\dagger} 0$	0.20 4	5704.17	2	1171.15	2
3246.61.15	0.294	3246 55	$\gamma^{(+)}$	0.0	0^+
3344 61 15	21.6.20	3344.83	$\frac{2}{2^{(+)}}$	0.0	0^{+}
3434 9 6	0 29 4	3435.0	$\frac{1}{2^{(+)}}$	0.0	0^{+}
3504 4 3	$0.29 \neq$ 0.49 4	3504.5	$\frac{1}{2^{(+)}}$	0.0	0^{+}
3817.9 4	0.35 3	3818.0	$\bar{2}^{(+)}$	0.0	0^{+}
3886.82.15	4.7.5	3886 54	$\bar{2}^{(+)}$	0.0	0^{+}
3964.20 15	2.4 2	3964.19	$\bar{2}^{(+)}$	0.0	0^{+}
		270	-	0.0	-

Continued on next page (footnotes at end of table)

126 In β^- decay (1.53 s) 1979Fo10 (continued)

$\gamma(^{126}\text{Sn})$ (continued)

Eγ	$I_{\gamma}^{\#}$	E _i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f \mathbf{J}_f^{\pi}$	Eγ	$I_{\gamma}^{\#}$	E _i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f \mathbf{J}_f^{\pi}$
4240.92 <i>15</i> 4257.0 <i>3</i> 4303.19 <i>15</i> 4330.8 <i>6</i>	1.5 2 0.33 6 2.5 3 0.13 3	4241.00 4257.1 4303.27 4330.9	$2^{(+)} \\ 2^{(+)} \\ 2^{(+)} \\ 2^{(+)} $	$\begin{array}{c ccc} 0.0 & 0^+ \\ 0.0 & 0^+ \\ 0.0 & 0^+ \\ 0.0 & 0^+ \end{array}$	4656.4 <i>5</i> 4699.4 <i>6</i> 4797.0 <i>6</i>	0.21 <i>3</i> 0.10 <i>3</i> 0.13 <i>4</i>	4656.5 4699.5 4797.1	$2^{(+)} \\ 2^{(+)} \\ 2^{(+)}$	$\begin{array}{c c} 0.0 & 0^+ \\ 0.0 & 0^+ \\ 0.0 & 0^+ \end{array}$

 † These γ rays might follow the decay of high-spin (8⁻) isomer.

[±] Doublet. The fraction of I γ belonging to the decay of high-spin (8⁻) isomer was obtained from $\gamma\gamma$ -coin. (1979Fo10). [#] Absolute intensity per 100 decays.

 $x \gamma$ ray not placed in level scheme.

From ENSDF

 $^{126}_{50}\mathrm{Sn}_{76}$ -5

SDF