Adopted Levels, Gammas

					History	r	
		Туре		Author		Citation	Literature Cutoff Date
		Full Evaluation I	H. Iimura, J	. Kataku	ra, S. Ohya	NDS 180, 1 (2022)	1-Oct-2021
Q(β ⁻)=378 30); S(n)=8	193 <i>11</i> ; S(p)=12892	2 11; $Q(\alpha)$ =	=-7828 1	11 2021Wa	16	
					¹²⁶ Sn Lev	rels	
				Cross	Reference (X	(REF) Flags	
		A ${}^{126}\text{In }\beta^{-}$ de B ${}^{126}\text{In }\beta^{-}$ de C ${}^{124}\text{Sn}(\text{t},\text{p})$ D ${}^{130}\text{Te}(\text{d},^{6}\text{Li})$ E ${}^{124}\text{Sn}({}^{14}\text{C},{}^{1})$	cay (1.64 s cay (1.53 s) ² C)) F) G H I J	¹²⁴ Sn(¹³⁶ Xe, ¹²⁷ In β ⁻ n de ¹²⁷ In β ⁻ n de ¹²⁴ Sn(¹⁸ O, ¹⁶) ⁹ Be(²³⁸ U,X)	$(X\gamma),(^{238}U,X\gamma)$ K ecay (1.09 s) L ecay (3.67 s) M $^{5}O)$	Coulomb excitation 238 U(12 C,F γ) 238 U(64 Ni,X γ)
E(level) [†]	\mathbf{J}^{π}	T _{1/2}	XRI	EF		C	Comments
0.0	0^{+}	2.18×10 ⁵ y 10	ABCDEFG	HIJKL	$\%\beta^{-}=100$		
1141.15 <i>4</i>	2+	1.13 ps 7	ABCDEF	IJKL	$T_{1/2}: weight(2009Bi07)(1999Ob0)(2005Ca1-(1996Ha4)(1996Zh1-\mu=-0.24 6J\pi: L(t,p)=2T1/2: weight$	ted av. of 1.98×10^5 y 7), 2.35×10^5 y 7 from 4), 2.33×10^5 y 10 fr 4), 2.07×10^5 y 21 fr 5) and 2.5×10^5 y 2 f 6). 2. ted av. of 1.15 7 ps of	y 6 from plasma-mass spectrometry n thermo-ionnisatio mass spectrometry om plasma-mass spectrometry om specific activity measurement from radiochemical method deduced from B(E2)=0.127 8
					(2011Al2: ex. μ: from Cou	5) and 1.04 <i>14</i> ps fro alomb ex.	m DSAM (2012Ku24) in Coulomb
2049.74 6	4+‡		ABCDEF	JL	J ^{π} : E1 γ fro inconsiste	om 5^- ; L(d, ⁶ Li)=(4); ent with 4^+ .	see comment in footnote; L(t,p)=5 is
2110.79 <i>6</i> 2130.08 <i>21</i>	2 ⁽⁺⁾		B E B E		J^{π} : γ' s to 0^{+}	⁺ and 2^+ ; log <i>ft</i> =5.65	5.3 from $3^{(+)}$.
2161.54 7	5-‡	10.8 ns 7	A CDEF	JL	J ^{π} : L(d, ⁶ Li) with 5 ⁻ .	=5, see comment in the sector in $126 \text{ In } \beta^-$ decisions	footnote ; $L(t,p)=6$ is inconsistent
2194.21 7			В		1 _{1/2} . nom p		(2012)(303).
2218.99 8	7-	6.1 µs 7	A CDEF	J LM	$\mu = -0.69 \ 7$ J^{π} : L(d, ⁶ Li) $T_{1/2}$: weight (1979Fo10 μ : in ⁹ Be(²³)	=7. ted av. of 6.6 μ s 14 f 0) and 5.9 μ s 8 in ⁹ E	from $\gamma \gamma(t)$ in ¹²⁶ In β^- decay Be(²³⁸ U,X γ) (2010II01).
2256.51 <i>21</i> 2276.85 <i>8</i> 2298 <i>25</i>			B B D		μ . III DC((20101101).	
2370.46 <i>6</i> 2373.2 <i>4</i>	$2^{(+)}$		BCD	L	$J^{\pi}: L(t,p) = (2)$	2); log <i>ft</i> =6.46 7 from	n $3^{(+)}$, γ to 0^+ .
2471.93 <i>16</i> 2477.51 <i>8</i> 2488.23 <i>9</i> 2550 <i>2</i> 5	6 ⁻ (8 ⁺)		B A A F	JLM	$J^{\pi}: M1(+E2) J^{\pi}: \gamma \text{ to } 7^{-},$	<i>t</i>) γ 's to 7 ⁻ and 5 ⁻ . γ from (10 ⁺) and sy	stematics.
2564.5 3	(10 ⁺)	7.6 µs 2	F	J LM	J ^{π} : systemat T _{1/2} : weight	tics. ted av. of 7.7 μ s 5 in	124 Sn(136 Xe,X γ), (238 U,X γ)

Continued on next page (footnotes at end of table)

¹²⁶Sn Levels (continued)

E(level) [†]	\mathbf{J}^{π}	T _{1/2}	XREF		Comments
					(2000Zh47), 7.5 μ s 3 in ⁹ Be(²³⁸ U,X γ) (2010II01) and 7.6 μ s 4 (1998GeZX).
2631.03 11			В		
2636.64 10	$2^{(+)}$		В		J^{π} : log ft=6.48 7 from 3 ⁽⁺⁾ ; γ 's to 0 ⁺ and 2 ⁺ .
2662.98 8			A D		
2712.06 8	$2,3,4^{+}$		В		J^{π} : log ft=6.90 17 from 3 ⁽⁺⁾ ; γ to 2 ⁺ .
2720 5	3-		CD		J^{π} : L(d, ⁶ Li)=3, L(t,p)=3.
2742.57 7			В		
2795 25			D		
2840.24 10			А		
2886.41 13			В		
2892 5	(5^{-})		CD		J^{π} : L(t,p)=(5).
2971 25	(-)		D		
3067.29 8			Α		
3246.55 10	$2^{(+)}$		В		J^{π} : log ft=5.74 4 from $3^{(+)}$: γ to 0^+ .
3283.83.9	(9^{-})		A CD	м	J^{π} : γ to 7^{-} . γ from (11 ⁻).
3300.3.3	(-)		B		
3344 83 9	$2^{(+)}$		R		I^{π} : log $f_{t}=5.049.8$ from $3^{(+)}$: γ to 0^{+}
3385 25	2		ت م		J. 10g ji = 5.017 0 11011 5 , 7 10 0 .
3424 5	4+		CD CD		I^{π} : I (t p)=4
3435.0.6	$2^{(+)}$		R		I^{π} : log $f_{t-6} 0.4$ 6 from $3^{(+)}$: γ to 0^{+}
3454 87 11	2		Δ		$J : \log f = 0.940$ from 5^{-1} , $\gamma to 0$.
3504 5 3	$\gamma^{(+)}$		R		I^{π} : log ft-6.68 / from $3^{(+)}$: χ to 0^+
3505.5.3	(12^{+})		Б	тм	J 10g μ = 0.06 4 from 13 ⁻ , y to 0.
3625 70 11	(12)		٨	LII	J. y to 10, y from 15 and systematics.
3783 /1 /3					
3800 21 17					
3818.0 /	$\gamma^{(+)}$		D		I^{π} : log ft-6.60 / from $2^{(+)}$: α to 0^+
3830 75 13	2.				J . $\log f = 0.094$ from 5° , γ to 0.
3855 54 8	(7 - 8 -)		л л		I^{π} : log ft-4.52.3 from (8 ⁻): α to 6 ⁻
2060 2 2	(7,0)		л		$J = 10g f_1 - 4.52 J = 1000 (8), y = 10 0$. $I_{\pi_1} = 10g f_1 - 4.32 J = 1000 (8), y = 10 0$.
3800.3 3	2,5,4		Б		J^{π} : log $J_{l}=0.42$ J from S^{π} ; γ to 2.
3886.54 9	2(1)		В		J^{π} : log $ft=5.43.5$ from $3^{(+)}$; γ to 0 ⁺ .
3917.3 5	2,3,4		В		J^{π} : log $ft=6.62.5$ from $3^{(7)}$. γ to 2 ⁽⁷⁾ .
3926.03 21	(11)			M	$J^{\prime\prime}$: γ from 13, γ to 12 ⁺ , to 7 with 2 γ 's cascade.
3950.3 5	a (1)		A		
3964.19 7	$2^{(+)}$		В		J^{n} : log ft=5.206 20 from $3^{(+)}$; γ to 0^{+} .
3977.39 15			A		
3985 25			D		
4013.97 21	2,3,4(+)		В		J^{n} : log ft=6.58 5 from $3^{(+)}$. γ to 2^{+} .
4166.5 3	(13^{-})	≤ 3 ns		LM	J^{n} : E2 γ from (15 ⁻), to 7 ⁻ with 3 γ 's cascade.
4104 10					$T_{1/2}$: from 2014Is04.
4184 10	a (1)		C		
4241.00 15	$2^{(+)}$		В		J^{π} : log ft=5.87 6 from $3^{(+)}$; γ to 0^{+} .
4257.1 <i>3</i>	$2^{(+)}$		В		J^{π} : log ft=6.52 8 from 3 ⁽⁺⁾ ; γ to 0 ⁺ .
4303.27 15	$2^{(+)}$		В		J^{π} : log ft=5.62 6 from 3 ⁽⁺⁾ ; γ to 0 ⁺ .
4330.9 6	$2^{(+)}$		В		J^{π} : log ft=6.89 10 from 3 ⁽⁺⁾ ; γ to 0 ⁺ .
4347.3 <i>3</i>	(15^{-})	126 ns 20		LM	J^{π} : systematics of isomer.
					$T_{1/2}$: weighted av. of 114 ns <i>12</i> (2014Is04) and 160 ns 20 (2012As05).
4447 10			С		
4556 5	$(4^+, 5^-)$		С		J $L(t,p)=(4,5)$.
4561.0 4	(14 ⁻)			M	J^{π} : from analogy with the other Sn isotope.
4583.1 5	(14^{+})			LM	J^{π} : a member of higher-seniority positive high-spin levels.
4656.5 5	$2^{(+)}$		В		J^{π} : log <i>ft</i> =6.52 7 from 3 ⁽⁺⁾ ; γ to 0 ⁺ .
4699.5 6	$2^{(+)}$		В		J ^{π} : log <i>ft</i> =6.82 <i>13</i> from 3 ⁽⁺⁾ ; γ to 0 ⁺ .
4734 5			С		

Continued on next page (footnotes at end of table)

¹²⁶Sn Levels (continued)

E(level) [†]	J^{π}	T _{1/2}	XREF		Comments
4767 5	3-		С		$\overline{J^{\pi}: L(t,p)=3}.$
4779.16 21	$(7^{-}, 8^{-}, 9^{-})$		Α		J^{π} : log ft=5.18 6 from (8 ⁻).
4797.1 6	$2^{(+)}$		В		J^{π} : log ft=6.65 14 from 3 ⁽⁺⁾ ; γ to 0 ⁺ .
4807 5	3-		С		J^{π} : L(t,p)=3.
4838 5	3-		С		J^{π} : L(t,p)=3.
4869 5	3-		С		J^{π} : L(t,p)=3.
4935 5	5-		С		J^{π} : L(t,p)=5.
4974 5	5-		С		J^{π} : L(t,p)=5.
4990.2 <i>3</i>	(7-)		Α		J^{π} : log <i>ft</i> =5.13 4 from (8 ⁻); γ to 5 ⁻ .
5009 5	5-		С		J^{π} : L(t,p)=5.
5041 5	5-		С		J^{π} : L(t,p)=5.
5061.0 7	(16^{+})	<30 ns		LM	J^{π} : a member of higher-seniority positive high-spin levels.
					$T_{1/2}$: estimated in 2012As05 from non-observation of any delayed
					component below the 16^+ state.
5092 5	5-		С		J^{π} : L(t,p)=5.
5160 5	7-		С		$J^{\pi}: L(t,p)=7.$
5188 5			C		
5214 5	3-		C		J^{π} : L(t,p)=3.
5257 5	5-		C		J^{π} : L(t,p)=5.
5297 5	5-		C		J^{π} : L(t,p)=5.
5339 10	(4+)		C		J^{π} : L(t,p)=(4).
5367 10	(4^{+})		C		J^{π} : L(t,p)=(4).
5397 10			C		
5436 10			C		
5497.3 3	(17^{-})		_	LM	J^{n} : a member of higher-seniority negative high-spin levels.
5528 10			C		
5587 10	(10+)		С		77 1 61-1
5838.2 8	(18 ⁺)			LM	J'': a member of higher-seniority positive high-spin levels.
6258.8 4	(19)			LM	J': a member of higher-seniority negative high-spin levels.
/324.0 6				M	
83/5.4 /				М	

[†] From least-squares fit to $E\gamma'$ s for levels populated in γ ray studies, and from (t,p) and (d,⁶Li) for levels populated only in particle-transfer studies.

⁴ Cascade of E2, E1 and Mult(908.58)=[E2] γ 's connecting $J^{\pi}=7^{-}$ and 2^{+} levels yields $J^{\pi}(2049.71)=4^{+}$ and $J^{\pi}(2161.50)=5^{-}$.

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	I_{γ} ‡	E_f	\mathbf{J}_f^{π}	Mult. [†]	α #	Comments
1141.15	2+	1141.11 5	100	0.0	0^{+}			
2049.74	4+	908.58 <i>5</i>	100	1141.15	2+			
2110.79	$2^{(+)}$	969.61 5	100 7	1141.15	2^{+}			
		2110.83 10	20.8 14	0.0	0^{+}			
2130.08		988.93 20	100	1141.15	2^{+}			
2161.54	5-	111.79 5	100 9	2049.74	4+	E1	0.1323 19	$B(E1)(W.u.)=1.57\times10^{-5}$ 10
		1020.41 10	0.66 17	1141.15	2^{+}	[E3]	0.00256 4	B(E3)(W.u.)=0.60 17
2194.21		1053.06 5	100	1141.15	2+			
2218.99	7-	57.47 5	100	2161.54	5-	E2	11.53 17	B(E2)(W.u.)=0.31 + 4 - 3
2256.51		1115.36 20	100	1141.15	2+			
2276.85		1135.70 10	100	1141.15	2^{+}			
2370.46	$2^{(+)}$	1229.31 5	89 <i>5</i>	1141.15	2^{+}			
		2370.41 15	100 11	0.0	0^+			

 $\gamma(^{126}\text{Sn})$

γ ⁽¹²⁶Sn) (continued)</sup>

E _i (level)	\mathbf{J}_i^{π}	E_{γ} ‡	I_{γ} ‡	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [†]	α #	Comments
2373.2		211 7 4	100.4	2161 54	5-			$F_{-}L$ from ²³⁸ $II(^{12}C F_{2})$
2373.2		1330 77 15	100 4	1141 15	2+			L_{γ}, L_{γ} . Hold $O(C, L_{\gamma})$.
2477 51	6-	258 53 5	79.6	2218.99	7-	M1(+F2)	0.050.8	
2177.51	0	315.93.5	100.9	2161 54	5-	M1(+E2) M1(+E2)	0.027 3	
2488 23	(8^{+})	269 26 5	100 2	2101.54	5 7-	WII(+L2)	0.027 5	
2564.5	(0^{+})	76.2.5	100	2210.77	(9+)			\mathbf{E} , from $124 \mathbf{S} \mathbf{n} (136 \mathbf{V}_2 \mathbf{V}_2)$
2504.5	(10)	1420 27 10	100	2400.23	(0)			E_{γ} . Itolii Sii($Ae, A\gamma$).
2031.03	$\mathbf{a}(\pm)$	1405.4.2	100	1141.15	2 2+			
2030.04	2(1)	1495.4 5	100 18	1141.15	2 · 0+			
2((2.09		2030.30 20	100 10	0.0	0.			
2662.98		443.94 5	32 3	2218.99	/			
2712.06	2.2.4+	501.45 J	100 8	2101.34	5 2+			
2/12.06	2,3,4	1570.96 10	100	1141.15	2. 2(+)			
2742.57		631.77 5	100 6	2110.79	2(1)			
2010.21		1601.43 10	88.6	1141.15	21			
2840.24		362.73 5	100	24/7.51	6			
2886.41		1745.15 20	100	1141.15	21			
3067.29		848.42 25	7.3.9	2218.99	/			
	-(1)	905.78 5	100 9	2161.54	5			
3246.55	$2^{(+)}$	503.92 20	6.6 13	2742.57				
		2105.31 15	62 6	1141.15	2+			
		3246.61 15	100 10	0.0	0^{+}			
3283.83	(9 ⁻)	1064.85 5	100	2218.99	7-			
3300.3	(.)	1250.52 25	100	2049.74	4+			
3344.83	$2^{(+)}$	1068.10 10	2.04 19	2276.85				
		2203.54 15	10.2 9	1141.15	2+			
		3344.61 15	100 9	0.0	0^{+}			
3435.0	$2^{(+)}$	3434.9 6	100	0.0	0^{+}			
3454.87		170.80 20	7.4 15	3283.83	(9 ⁻)			
		387.52 15	44 4	3067.29				
		977.42 15	100 11	2477.51	6-			
		1235.95 10	93 8	2218.99	7-			
3504.5	$2^{(+)}$	3504.4 <i>3</i>	100	0.0	0^{+}			
3595.5	(12^{+})	1030.9 <i>1</i>	100	2564.5	(10^{+})			E_{γ}, I_{γ} : from ²³⁸ U(⁶⁴ Ni, X γ).
3625.79		962.66 10	579	2662.98				
		1406.95 10	100 9	2218.99	7-			
3783.41		1564.41 10	100	2218.99	7-			
3809.21		1590.21 15	100	2218.99	7-			
3818.0	$2^{(+)}$	3817.9 4	100	0.0	0^{+}			
3830.75		1611.75 10	100	2218.99	7-			
3855.54	$(7^{-}, 8^{-})$	571.74 5	10.1 7	3283.83	(9-)			
		788.30 5	27.7 20	3067.29				
		1192.53 5	14.9 10	2662.98				
		1367.35 10	9.5 7	2488.23	(8^{+})			
		1377.99 5	78 7	2477.51	6-			
		1636.50 10	100 7	2218.99	7-			
3860.3	$2,3,4^{+}$	2719.1 3	100	1141.15	2^{+}			
3886.54	$2^{(+)}$	1174.32 10	6.6 9	2712.06	$2,3,4^{+}$			
		2745.36 20	20.2 21	1141.15	2+			
		3886.82 15	100 11	0.0	0^{+}			
3917.3	$2,3,4^{+}$	2776.1 5	100	1141.15	2^{+}			
3926.03	(11^{-})	642.2 2	80 20	3283.83	(9 ⁻)			E_{γ}, I_{γ} : from ²³⁸ U(⁶⁴ Ni, X γ).
	. /	1361.6.3	100.20	2564.5	(10^{+})			$E_{\nu} I_{\nu}$: from ²³⁸ U(⁶⁴ Ni X ν)
3950.3		1731.3.5	100	2218.99	7-			,, , · · · · · · · · · · · · · · · · ·
3964.19	$2^{(+)}$	1077.73 15	13.3 17	2886.41	-			
	-	1252.34 10	71 4	2712.06	$2.3.4^{+}$			
					,, .			

Continued on next page (footnotes at end of table)

$\gamma(^{126}Sn)$ (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	I_{γ}^{\ddagger}	E_f	\mathbf{J}_f^π	Mult. [†]	α #	Comments
3964.19	2 ⁽⁺⁾	1327.46 10	24.2 21	2636.64	$2^{(+)}$			
		1593.73 10	46 4	2370.46	$2^{(+)}$			
		1687.20 10	92 9	2276.85				
		2822.9 <i>3</i>	42 4	1141.15	2+			
		3964.20 15	100 9	0.0	0^{+}			
3977.39		1314.46 15	35 4	2662.98				
	(.)	1758.30 20	100 8	2218.99	7-			
4013.97	$2,3,4^{(+)}$	1643.50 20	100	2370.46	$2^{(+)}$			220 (4
4166.5	(13 ⁻)	240.5 2	22.0 25	3926.03	(11^{-})			E_{γ}, I_{γ} : from ²³⁸ U(⁶⁴ Ni, X γ).
		571.0 <i>1</i>	100 6	3595.5	(12^{+})			E_{γ} , I_{γ} : from ²³⁸ U(⁶⁴ Ni,X γ).
4241.00	$2^{(+)}$	4240.92 15	100	0.0	0^{+}			
4257.1	$2^{(+)}$	4257.0 <i>3</i>	100	0.0	0^{+}			
4303.27	$2^{(+)}$	4303.19 15	100	0.0	0^{+}			
4330.9	$2^{(+)}$	4330.8 6	100	0.0	0^{+}			
4347.3	(15 ⁻)	180.8 <i>1</i>	100	4166.5	(13 ⁻)	E2	0.198 3	B(E2)(W.u.)=0.52 9
								E_{γ} , I_{γ} : from ²³⁸ U(⁶⁴ Ni,X γ).
								Mult.: from $\alpha(\exp)=0.25 \ 5$ by intesity imbalances (2012As05).
4561.0	(14 ⁻)	213.7 3	100 2	4347.3	(15^{-})			E_{γ}, I_{γ} : from ²³⁸ U(⁶⁴ Ni, X γ).
4583.1	(14^{+})	987.6 4	100	3595.5	(12^{+})			E_{γ}, I_{γ} : from ²³⁸ U(⁶⁴ Ni, X γ).
4656.5	2 ⁽⁺⁾	4656.4 5	100	0.0	0+			
4699.5	$2^{(+)}$	4699.4 6	100	0.0	0^{+}			
4779.16	$(7^{-}, 8^{-}, 9^{-})$	1495.4 <i>3</i>	50 16	3283.83	(9 ⁻)			
		2560.10 25	100 8	2218.99	7-			
4797.1	$2^{(+)}$	4797.0 6	100 9	0.0	0^{+}			
4990.2	(7 ⁻)	2828.6 <i>3</i>	100	2161.54	5-			
5061.0	(16 ⁺)	477.9 4	100 9	4583.1	(14^{+})			E_{γ} , I_{γ} : from ²³⁸ U(⁶⁴ Ni,X γ).
		713.7 [@]	<7	4347.3	(15 ⁻)			E_{γ} , I_{γ} : from ²³⁸ U(⁶⁴ Ni, X γ).
5497.3	(17 ⁻)	1150.0 <i>1</i>	100	4347.3	(15 ⁻)			E_{γ} , I_{γ} : from ²³⁸ U(⁶⁴ Ni, X γ).
5838.2	(18^{+})	777.2 5	100	5061.0	(16^{+})			E_{γ} , I_{γ} : from ²³⁸ U(⁶⁴ Ni, X γ).
6258.8	(19 ⁻)	761.5 2	100	5497.3	(17^{-})			E_{γ} , I_{γ} : from ²³⁸ U(⁶⁴ Ni, X γ).
7324.0		1826.7 5	100	5497.3	(17 ⁻)			E_{γ} , I_{γ} : from ²³⁸ U(⁶⁴ Ni, X γ).
8375.4		2116.6 6	100	6258.8	(19 ⁻)			E_{γ}, I_{γ} : from ²³⁸ U(⁶⁴ Ni, X γ).

[†] From $\alpha(\exp)$ in ¹²⁶In β^- decay, unless otherwise noted. [‡] From ¹²⁶In β^- decay (1979Fo10) unless otherwise noted.

[#] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

[@] Placement of transition in the level scheme is uncertain.

 $^{126}_{50}{\rm Sn}_{76}$

Adopted Levels, Gammas

Level Scheme (continued)

Intensities: Relative photon branching from each level

 $^{126}_{50}{
m Sn}_{76}$

Adopted Levels, Gammas

Level Scheme (continued)

Intensities: Relative photon branching from each level

