Adopted Levels

History				
Туре	Author	Citation	Literature Cutoff Date	
Full Evaluation	H. Iimura, J. Katakura, S. Ohya	NDS 180, 1 (2022)	1-Oct-2021	

 $Q(\beta^{-})=14590 SY; S(n)=3440 SY; S(p)=16120 SY; Q(\alpha)=-13320 SY$ 2021Wa16

 $\Delta Q(\beta^{-})=640, \Delta S(n)=710, \Delta S(p)=580, \Delta Q(\alpha)=580$ (2021WA16).

2010Oh02: ¹²⁶Rh nuclide identified in Be(²³⁸U,F) and Pb(²³⁸U,F) reactions with a ²³⁸U⁸⁶⁺ beam energy of 345 MeV/nucleon produced by the cascade operation of the RIBF accelerator complex of the linear accelerator RILAC and four cyclotrons RRC, fRC, IRC and SRC. Identification of ¹²⁶Rh nuclei was made on the basis of magnetic rigidity, time-of-flight and energy loss of the fragments using BigRIPS fragment separator. Based on A/Q spectrum and Z versus A/Q plot, one count was assigned to ¹²⁶Rh isotope (Q=charge state).

2015Lo04: ¹²⁶Rh nuclide produced at RIBF-RIKEN facility in ⁹Be(²³⁸U,F) reaction at E=345 MeV/nucleon with an average intensity of 6×10^{10} ions/s. Identification of ¹²⁶Rh was made by determining atomic Z and mass-to-charge ratio A/Q, where Q=charge state of the ions. The selectivity of ions was based on magnetic rigidity, time-of-flight and energy loss. The separated nuclei were implanted at a rate of 50 ions/s in a stack of eight double-sided silicon-strip detector (WAS3ABi), surrounded by EURICA array of 84 HPGe detectors. Correlations were recorded between the implanted ions and β rays. The half-life of ¹²⁶Rh isotope was measured from the correlated ion- β decay curves and maximum likelihood analysis technique as described in 2014Xu07. Comparison of measured half-lives with FRDM+QRPA, KTUY+GT2 and DF3+CQRPA theoretical calculations.

2013Fa08: theoretical calculations of $T_{1/2}$ and $\%\beta^-n$. Additional information 1.

126Rh Levels

E(level)	T _{1/2}	Comments	
0	19 ms 3	$\%\beta^{-}=100; \ \%\beta^{-}n=?; \ \%\beta^{-}2n=?$ Theoretical $\%\beta^{-}n=23.0, \ \%\beta^{-}2n=0.43$ (2003Mo09).	
		Measured σ =0.7 pb (20100h02), systematic uncertainty≈40%. Probability of misidentification of ¹²⁶ Rh isotope=0.46% (20100h02).	
		E(level): measured half-life is assumed to correspond to the ground state of ¹²⁶ Rh.	
		$T_{1/2}$: measured by 2015Lo04 from (implanted ions) β correlated curves in time and position using maximum likelihood method. See 2015Lo04 for comparison of their experimental value with theoretical ones.	