				History
		Type		Author Citation Literature Cutoff Date
]	Full Evaluatio	n H. Ii	mura, J. Katakura, S. Ohya NDS 180, 1 (2022) 1-Oct-2021
$Q(\beta^{-})=1236 \ 4$	s; S(n)=71	146 <i>4</i> ; S(p)=6	178 <i>4</i> ; Q($(\alpha) = -2001 \ 4 \ 2021 \text{Wa16}$
				¹²⁶ I Levels
				Cross Reference (XREF) Flags
				126
				$\frac{A}{1201} \frac{1201}{10} \frac{1271}{10} 127$
				$\int \frac{127}{1} I(n,2117)$
				$D = \frac{124}{\text{Sn}}(7\text{Li},5n\gamma)$
E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	XREF	Comments
0.0	2^{-}	12.93 d 5	ABCD	$\%\varepsilon + \%\beta^+ = 52.75; \ \%\beta^- = 47.35 \ (1998Fo05)$
				$\mu = 1.438 4$ T = 1 from weighted as of 12.1 d 2 (10681-02) 12.02 d 7 (10680-02) 12.1 d 5
				$1_{1/2}$: from weighted av of 15.1 d 5 (1908)002), 15.02 d 7 (1908)002), 15.1 d 5 (1957) $13.5 d 6$ (1957) $13.3 d 7$ (1954) $13.1 d 5$ (1948) 033)
				13.0 d 3 (1938Li05), 12.8 d I (1965An05), 12.93 d 6 (1975Ok04), 12.82 d 5
				(1998Fo05).
				J^{π} : atomic beam (1960Ga12); first-forbidden unique β^{-} to 0 ⁺ .
				μ : nuclear static orientation and radiative detection of nuclear magnetic resonance (2019StZV 1992Ob01)
56.43 4	1^{+}	15.9 ns <i>14</i>	ABCD	XREF: B(66)C(60).
				$T_{1/2}$: from $\gamma\gamma(t)$ (1983Bu11). other; 20 ns from $\gamma(t)$ (2012MoZZ).
110.05 /	(2+)	5()	1 - D	J^{π} : J=1 from $\gamma(\theta)$ and E1 γ to 2 ⁻ in (p,n γ).
110.85 4	(3^{+})	56 ns 3	A CD	$\mu = -2.24 Z$ XREF: c(118)
				μ : differential perturbed angular distribution (1975BIZY,2020StZV).
				$T_{1/2}$: from $\gamma\gamma(t)$ (1983Bu11). other; 128 ns from $\gamma(t)$ (2012MoZZ).
100 17 5	4-	12.5 mg 11	A cD	J^{π} : E1 γ to 2 ⁻ and M1+E2 γ from (4 ⁺).
122.17 3	4	15.5 IIS 11	A CD	T _{1/2} : from $\gamma\gamma(t)$ (1983Bull), other: 11 ns from $\gamma(t)$ (2012MoZZ).
				J^{π} : stretched E2 γ to 2 ⁻ in (⁷ Li,5n γ).
146 2			С	
166.04 8			A	
204 28 6	(4^{+})			I^{π} : M1+F2 γ 's from (3) ⁺ and (5 ⁺) in (⁷ L i 5n γ)
222.62 4	$1^+, 2^+$		A C	J^{π} : E1 γ to 2 ⁻ , M1(+E2) to 1 ⁺ .
227.78 5	2+		A C	J ^{π} : from $\gamma(\theta)$ in (p,n γ); M1(+E2) γ to 1 ⁺ .
237.23 17	6-	16 ns	D	This level seems to be same the 237.38 level from ¹²⁶ Te(p,n γ). However, the suggested spin 6 ⁻ value is different with that of 3 ⁺ . The valuators assumed the different level.
				J^{π} : stretched E2 γ to 4 ⁻ in (⁷ Li,5n γ).
237 38 6	3+		ARC	$I_{1/2}$: from $\gamma(t)$ (2012MoZZ). I^{π} : F1 γ' s to 2 ⁻ and 4 ⁻
244.79 6	$(4)^+$		A D	J^{π} : M1.E2 γ from 2 ⁺ in (p,n γ) and γ from (6 ⁺) in (⁷ Li,5n γ).
290.88 ^h 21	(5 ⁺)		D	J^{π} : stretched E2 γ from (7 ⁺) in (⁷ Li,5n γ).
304.97 21	(7-)		D	J^{π} : M1+E2 γ to 6 ⁻ in (⁷ Li,5n γ).
311.28 6	(2^{+})		A C	XREF: C(316).
378 05 16	(6^{+})		л	J [*] : M1(+E2) γ to 1 ⁺ , γ to (4 ⁺). I ^{π} : M1(E2) γ from (7 ⁺) in (7L i 5m)
320.95 10	(3^{-})		ں A	J^{π} : M1(+E2) γ to 4 ⁻ 122 level, γ from 2 ⁺ .
338.49 9	<u> </u>		Α	J^{π} : M1(+E2) γ to 4 ⁻ .

Continued on next page (footnotes at end of table)

Adopted Levels, Gammas (continued)

¹²⁶I Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	XREF	Comments
343.46 5	_	Ас	XREF: c(344).
348.44 6	2+	Abc	J ^{α} : M1,E2 γ to 2 ⁻ . XREF: b(360)c(344).
			J^{π} : from $\gamma(\theta)$ and M1,E2 γ to 1 ⁺ in (p,n γ).
365.49 7	$(2^+, 3^+, 4^+)$	AbC	XREF: $b(360)$. J^{π} : M1(+E2) γ to (3 ⁺).
369.57 8	-	Ab	XREF: b(360).
373.76 6	+	А	$J^{*}: M1(+E2) \gamma$ to $J^{\pi}: M1.E2 \gamma$ to 2^{+} .
393.80 ⁱ 6	$(3)^{+}$	A D	J^{π} : γ to (5 ⁺), M1,E2 γ to 1 ⁺ from α (K)exp (1997DaZY) in (p,n γ).
397.56 8 410 <i>3</i>	2-,3-	AC C	J^{π} : from $\gamma(\theta)$, M1,E2 γ to 2 ⁻ and γ to 4 ⁻ .
410.73 [#] 21	(8 ⁻)	D	J ^{π} : M1+E2 γ to (7 ⁻), stretched E2 γ to 6 ⁻ in (⁷ Li,5n γ).
422.23 7 434.22 5	+	A A C	J^{π} : M1,E2 γ to 1 ⁺ .
448 2		С	
458.04? <i>13</i> 465.10		A R	
478.99 6	2+	A	J^{π} : from $\gamma(\theta)$ and M1,E2 γ to 1 ⁺ from $\alpha(K) \exp(1997 \text{DaZY})$ in (p,n γ).
491.03 11	+	Α	J^{π} : M1,E2 γ to 1 ⁺ .
501.61 21 506.96 14	(7^{+})	D	J^{π} : D γ to (8 ⁻), M1+E2 γ to (6 ⁺) in ('Li,5n γ).
513.49 8	+	A	J^{π} : M1,E2 γ to +.
535.63 8	+	Α	J^{π} : M1,E2 γ to 1 ⁺ .
544.65 8 550	+	A R	J^{n} : M1,E2 γ to +.
564.54^{i} 20	(4^{+})	D	J^{π} : M1+E2 γ to (3) ⁺ , γ to (6 ⁺) in (⁷ Li.5n γ).
566.79 10		Α	
570.36 7	(0-)	A	M_{1} , M1 + E2 + 4-(7-) $\frac{1}{2}$, (71 $\frac{1}{2}$ 5-+)
577.588 24 580.64? 13	(8)	A	$J^{*}: M1 + E2 \gamma to(7) in (21,5n\gamma).$
591.34 7	+	A	
617.88 <i>11</i> 658 30 <i>12</i>	i	A A	$J^*: M1, E2 \gamma$ to +.
676.68 8	+	A	J^{π} : E2(+M1) γ to +.
687.92 9	$2^{-}, 3^{-}$	A	J^{π} : from $\gamma(\theta)$ and M1,E2 γ to π =- in (p,n γ).
703.14 7	,	A A	J ^{n} : M1(+E2) γ to π =+.
735.20 [@] 22	(9 ⁻)	D	J^{π} : M1+E2 γ to (8 ⁻), stretched E2 γ to (7 ⁻) in (⁷ Li,5n γ).
748.69 12	(\mathcal{L}^{+})	A	π . M1 + E2 at to (5^{+}) in $(71, 5^{-})$
800.09? 13	(0)	A	$J : M1+E2 \ \gamma \ 10 \ (5 \) \ 111 \ (E1, 511 \gamma).$
812.79 11		Α	
819.48 <i>12</i>	(5+)	A	π_{1} = Γ_{2} = Γ_{2} = Γ_{1} = Γ_{2} = Γ_{2} = Γ_{1} = Γ_{2} = Γ_{2
865.58° 23 868.99 9	(5^+) $(2^+,3,4^+)$	A	$J^{*:} \ge 2 \gamma$ to (3) [*] , M1+E2 γ to (4 [*]) in (*Li,Sn γ). $J^{\pi:} \gamma$'s to (4 ⁺) and 2 ⁺ .
890.30 12		Α	
907.24 <i>24</i>	(8^+)	D	J^{π} : M1+E2 γ from (9 ⁺) in (⁷ Li,5n γ).
921.6" 3 941 4 3	(/')	ע ת	J': stretched E2 γ from (9') in ('L1,5n γ).
944.67 21		A	
956.6 12		A	
979.1 3 1000.19 72		A A	
1002.57 11		A	

Continued on next page (footnotes at end of table)

Adopted Levels, Gammas (continued)

¹²⁶I Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	XREF	Comments
1076.81 25	(9 ⁻)	D	J^{π} : M1+E2 γ to (8 ⁻), E2 γ to (7 ⁻) in (⁷ Li,5n γ).
1082.69? 14		Α	
1102.16 13		A	
1129.80" 24	(10^{-})	D	J^{n} : M1+E2 γ to (9 ⁻), E2 γ to (8 ⁻) in ('L1,5n γ).
1210.9 3		ע ת	
1209.0° 3	(10^{-})	D	I^{π} · M1+E2 γ to (9 ⁻) stretched E2 γ to (8 ⁻) in (⁷ Li 5n γ)
1352.57 23	(9^+)	D	J^{π} : E1+M2 γ to (9 ⁻), E1+M2 γ to (8 ⁻) in (⁷ Li,5n γ).
1379.4 ^{<i>f</i>} 3	(10^{-})	D	J^{π} : M1+E2 γ to (9 ⁻), γ to (8 ⁻) in (⁷ Li,5n γ).
1431.2 5	(8 ⁺)	D	J^{π} : stretched E2 γ to (6 ⁺) in (⁷ Li,5n γ).
1432.56 ^b 24	(10^{+})	D	J^{π} : E1 γ to (9 ⁻), M1+E2 γ to (9 ⁺) in (⁷ Li,5n γ).
1468.51 [@] 25	(11 ⁻)	D	J^{π} : M1+E2 γ to (10 ⁻), stretched E2 γ to (9 ⁻) in (⁷ Li,5n γ).
1567.1 ⁱ 4	(7^{+})	D	J^{π} : stretched E2 γ to (5 ⁺) in (⁷ Li,5n γ).
1614.1 ^h 3	(9+)	D	J^{π} : stretched E2 γ from (11 ⁺) at 2214-keV level.
1832.1 ^c 3	(11^{+})	D	
1893.8 [#] 3	(12^{-})	D	
1947.6 5		D	
2079.2 4	(11)	D	
2131.0 ⁰ 3	(12^{+})	D	
2137.2 3	(12^{-})	D	
2170.88 4	(12)	D	
$2213.92^{-2}23$	(11^{-})	D	
2322.2 - 3	(13)	D	
2427.1 5	(11^{+})	D	
2433.0° 3	(12^+) (13^+)	ע ת	
2597.9 4	(13^{-})	D	
$2644.4^{d}4$	(13^+)	D	
2708.0 ^{<i>a</i>} 3	(13^+)	D	
2759.3 [#] 3	(14 ⁻)	D	
2800.9 ^b 4	(14^{+})	D	
2959.8 <mark>&</mark> 4	(14^{+})	D	
3018.1 ^d 5	(14^{+})	D	
3020.3 ^c 4	(15+)	D	
3025.4 ^{<i>f</i>} 4	(14 ⁻)	D	
3170.9 <mark>8</mark> 6	(14 ⁻)	D	
3290.6 [@] 3	(15 ⁻)	D	
3358.9 ^{<i>a</i>} 4	(15+)	D	
3410.2 ⁰ 4	(16^{+})	D	
3427.8 ^{<i>a</i>} 4	(15^+)	D	
35/5.84	(15)	D D	
3003.3 4	(15)	ע	
3686.5.5	(10)	D	
3746.3 & 5	(16^{+})	ם ח	
3842.9 5	(10)	D	
3847.9 ^d 6	(16 ⁺)	D	
4019.0 [°] 4	(17 ⁺)	D	
4097.3 ^{<i>f</i>} 5	(16 ⁻)	D	

Adopted Levels	, Gammas	(continued)
----------------	----------	-------------

E(level) [†]	$J^{\pi \ddagger}$	XREF	E(level) [†]	$J^{\pi \ddagger}$	XREF	E(level) [†]	J ^{π‡}	XREF
4129.9 4		D	4767.7 7		D	5706.9 ^e 8	(21 ⁻)	D
4184.3 [@] 4	(17^{-})	D	4885.9 ^e 6	(19 ⁻)	D	5954.4 [°] 6	(21^{+})	D
4235.8 ^{<i>a</i>} 5	(17^{+})	D	4982.1 [°] 5	(19 ⁺)	D	6104.4 ^b 6		D
4293.7 6		D	5143.2 [@] 5	(19 ⁻)	D	6231.7 [@] 6		D
4314.3 ^e 4	(17-)	D	5217.2 ^a 6		D	6506.1 9	(22 ⁻)	D
4328.4 ^d 6		D	5424.8 ^b 5	(20^{+})	D	6659.9 [#] 8		D
4501.5 ^b 5	(18^{+})	D	5529.1 [#] 6	(20^{-})	D	6806.4 ^e 9	(23 ⁻)	D
4534.3 [#] 5	(18 ⁻)	D	5569.7 8	(20^{-})	D	7045.4? ^C 7		D
4650.6 ^{&} 5	(18^{+})	D	5610.6 <mark>&</mark> 8		D	7117.4? <mark>b</mark> 8		D

¹²⁶I Levels (continued)

[†] From least-squares fit to $E\gamma's$.

[‡] From (⁷Li,5n γ) unless otherwise noted. The J^{π} assignments in (⁷Li,5n γ) are based on the band structures and the assumptions that 1) the quadrupole transition and the dipole transition from DCO values are stretche E2 transition and M1+E2 transition, respectively and 2) the spin values increase with increasing excitation energy.

[#] Band(A): Band based on (8⁻), α =0. Proposed configuration= $\pi d_{5/2} \otimes v h_{11/2}$.

^(a) Band(a): Band based on (9⁻), α =1. Proposed configuration= $\pi d_{5/2} \otimes v h_{1/2}$.

& Band (B): Band based on $(12^+), \alpha = 0$. Proposed configuration= $\pi h_{11/2} \otimes v h_{11/2}$.

^{*a*} Band(b): Band based on (11⁺), α =1. Proposed configuration= $\pi h_{11/2} \otimes v h_{11/2}$.

^b Band(C): Band based on (10⁺), α =0. Proposed configuration= $\pi h_{11/2} \otimes \nu h_{11/2}$.

^c Band(c): band based on $11^+, \alpha = 1$. Proposed configuration= $\pi h_{11/2} \otimes v h_{11/2}$.

^d Band(D): Band based on (13⁺).

^e Band(E): Band based on (15⁻). Possible 4-qp band.

^{*f*} Band(F): Band based on (10⁻). Proposed configuration= $\pi d_{5/2} \otimes v h_{11/2}$.

^{*g*} Band(G): Band based on (8⁻). Proposed configuration= $\pi g_{7/2} \otimes \nu h_{11/2}$.

^h Band(H): Band based on (5⁺).

^{*i*} Band(I): Band based on $(3)^+$.

					Adopted L	evels, Gam	mas (contin	ued)
						$\gamma(^{126}I)$	<u>)</u>	
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	$\mathbf{E}_f = \mathbf{J}_f^{\pi}$	Mult. [‡]	δ^{\ddagger}	α^{a}	Comments
56.43 110.85	1 ⁺ (3 ⁺)	56.45 [#] 8 54.6 <i>3</i>	100 [#]	$\begin{array}{ccc} 0.0 & 2^- \\ 56.43 & 1^+ \end{array}$	E1 [@]		0.995	B(E1)(W.u.)= $4.7 \times 10^{-5} 5$
122.17	4-	110.85 [#] 6 122.20 <i>10</i>	100.0 [#] 5 100	0.0 2 ⁻ 0.0 2 ⁻	E1 [@] E2		0.1528 0.863	B(E1)(W.u.)=3.06×10 ⁻⁶ 17 B(E2)(W.u.)=21.9 17 E _γ : from ¹²⁶ Te(p,nγ). Mult.: δ (M3/E2)= +0.24 3 is reported in (⁷ Li,5nγ). From RUL (M3)<10, one expects δ <1.2x10 ⁻⁴ . The evaluators adopt mult=E2.
166.04		109.60 [#] 20 166.00 [#] 17	50 [#] 14 100 [#] 17	56.43 1^+ 0.0 2^-				
178.96		56.75 [#] 15 178.95 [#] 7	100 [#] 51 18 [#] 4	$\begin{array}{cccc} 122.17 & 4^{-} \\ 0.0 & 2^{-} \end{array}$				
204.28	(4 ⁺)	93.45 [#] 6	100#	110.85 (3+)	M1+E2 [@]		1.6 7	
222.62	1+,2+	111.80 [#] 6 166.20 [#] 5	$20.2^{\#}$ 13 100.0 [#] 17	110.85 (3^+) 56.43 1^+	M1(+E2) [@]		0.24 6	
		222.60 [#] 6	41.0 [#] 16	0.0 2-	E1 [@]		0.0220	
227.78	2+	117.05 [#] 7	26.5 [#] 11	110.85 (3 ⁺)	M1(+E2) [@]		0.7 3	
		171.42 [#] 7 227.70 [#] 10	$100.0^{\#} 17$ $4.8^{\#} 15$	56.43 1^+ 0.0 2^-	M1(+E2) [@]		0.22 5	
237.23	6-	115.1 2	100	122.17 4-	E2		1.066	Mult.: $\delta(M3/E2) = +0.23 \ 1$ is reported in (⁷ Li,5n γ). From RUL (M3)<10, one expects $\delta < 1.2 \times 10^{-4}$. The evaluators adopt mult=E2.
237.38	3+	115.14 [#] 8	100 [#] 4	122.17 4-	E1 [@]		0.1374	
		237.47 [#] 8	28 [#] 6	$0.0 2^{-}$	E1 [@]		0.0185	
244.79	$(4)^{+}$	(7.5)	100#	237.38 3+				E_{γ} : Not observed, but required by $\gamma\gamma$ data in (p,n γ).
290.88	(5^{+})	122.70 ^m 20 86.8 3	100" 100	$122.17 \ 4^{-}$ 204 28 (4 ⁺)	M1+F2		209	
304.97	(7^{-})	67.8 2	100	237.23 6	M1+E2	+0.16 3	2.40 7	
311.28	(2 ⁺)	83.50 [#] 10	23 [#] 3	227.78 2+				
		88.70 [#] 9	10 [#] 3	222.62 1+,2+				
		107.00 [#] 7	$59^{\#}_{\#}4$	204.28 (4+)	e			
328.95	(6+)	254.75 [#] 11 84.2 2 91.7 3	100 " 16 100 4	56.43 1^+ 244.79 $(4)^+$ 237.23 6^-	M1(+E2) [@] (E2)		0.063 <i>6</i> 2.2 <i>10</i>	
331.28	(3 ⁻)	86.34 [#] 17	100 [#] 6	244.79 (4) ⁺				Mult.: 1983Bull propose M1 for the 86 γ to 245 (4) ⁺ level from intensity balance in $\gamma\gamma$ spectrum. However, it is inconsistent with the negative parity of the 221 level
								In CONSISTENT WITH THE DEVALUE DATILY OF THE ANT LEVEL

S

From ENSDF

 $^{126}_{53}\mathrm{I}_{73}$ -5

 $^{126}_{53}\mathrm{I}_{73}$ -5

	Adopted Levels, Gammas (continued)												
					γ ⁽¹²⁶ I)	(continued))						
E _i (level)	\mathbf{J}_i^π	E_{γ}^{\dagger}	I_{γ}^{\dagger}	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult. [‡]	δ^{\ddagger}	α^{a}	Comments					
338.49	_	216.35 [#] 8	100 [#]	122.17 4-	$M1(+E2)^{@}$		0.104 16						
343.46	-	343.45 [#] 5	100#	0.0 2-	M1.E2 [@]		0.0262						
348.44	2+	120.66 [#] 10	13.1 [#] 20	227.78 2+	,								
		125.78 [#] 9	15.3 [#] 28	222.62 1+.2+									
		292.00 ^{b#} 5	100 b# 16	56.43 1+	M1,E2 [@]		0.0420 20						
365.49	$(2^+, 3^+, 4^+)$	142.90 [#] 7	100 [#] 6	222.62 1+,2+	,								
		254.65 [#] 11	59 [#] 28	110.85 (3 ⁺)	M1(+E2)		0.063 6						
369.57	-	132.20 [#] 10	28 [#] 6	237.38 3+									
		247.40 [#] 10	100 [#] 13	122.17 4-	M1(+E2) [@]		0.069 7						
373.76	+	62.56 [#] 18	49 [#] 6	311.28 (2 ⁺)									
		146.00 [#] 6	100 [#] 4	227.78 2+	M1,E2 [@]		0.36 11						
		262.80 [#] 12	9 [#] 5	110.85 (3+)									
393.80	$(3)^+$	103.1 <i>3</i>	26 7	290.88 (5 ⁺)				I_{γ} : I_{γ} =3.7 6 from (⁷ Li,5n γ) is normalized using the					
								branching ratios with $I\gamma$'s of the 149 keV γ from					
		140.00# 11	70# 10	244.70 (4)+			0.24.10	$(L_{1},5n\gamma)$ and $(p,n\gamma)$.					
		$149.00^{"}$ 11	75'' 10	$244.79(4)^{+}$	(M1+E2)		0.34 10						
		$189.50^{+}5$	3/" 12	$204.28 (4^{\circ})$	(E2)		0.0076	Malta from onio posito denos of $(2)^+$ to 1^+ M1 E2					
		557.40" 10	100" 29	30.43	(E2)		0.0276	from $\alpha(K) \exp((1997DaZY))$ in (p.ny).					
397.56	23-	275.35 [#] 10	25 # 6	122.17 4-									
	_ ,=	397.60 [#] 10	100 [#] 10	0.0 2-	M1.E2		0.0174 8						
410.73	(8 ⁻)	105.7 2	100.0 3	304.97 (7-)	M1+E2	+0.25 1	0.686 11						
		173.5 3	2.2 4	237.23 6-	E2		0.253						
422.23		194.45 [#] 5	100#	227.78 2+									
434.22	+	206.60 [#] 10	18 [#] 5	227.78 2+									
		211.65 [#] 10	25 <mark>#</mark> 7	222.62 1+,2+									
		323.35 [#] 5	59 [#] 15	110.85 (3 ⁺)									
		377.75 [#] 5	100 [#] 15	56.43 1+	M1,E2		0.0201 7						
458.04?		292.00 ^{0#} 10	100 ^{0#}	166.04									
465	2+	465 10	20 [#] 4	0.0 2				E_{γ} : from (n,2n γ).					
478.99	2.	140.70'' 20	28" 4 7 <mark>#</mark> 4	338.49 221.28 (2=)									
		$147.70^{"}$ 10	/" 4 27 # 6	331.28(3)	(E2)		0.0000	Male, from only particulated of 2^+ to $(4)^+$ M1 E2					
		234.20" 0	3/" 0	244.79 (4)	(E2)		0.0909	Mult.: from spin-parity change of 2' to (4)'. M1,E2 from $\alpha(K)$ exp (1997Da7.Y) in (p py)					
		312.90 [#] 10	74 [#] 10	166.04				nom a(n)orp (1777 ball 1) in (p,ir)).					
		$356.90^{\#}$ 10	11 [#] 10	$122.17 4^{-}$									
		22000 10											

6

					Adopted Levels	, Gammas	(continued)	
					$\gamma(^{126}]$) (continued	<u>d)</u>	
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult. [‡]	δ^{\ddagger}	α^{a}	Comments
478.99	2+	422.42 [#] 14	100 [#] 16	56.43 1+	M1 [@]		0.01557	Mult.: from spin-parity change of 2^+ to 1^+ . M1,E2 from $\alpha(K)\exp(1997\text{DaZY})$ in $(p,p\gamma)$.
491.03	+	434.60 [#] 10	100 [#]	56.43 1+	M1,E2 [@]		0.0137 9	
501.61	(7 ⁺)	91.2 <i>3</i> 172.6 <i>2</i>	22.4 100.4	410.73 (8 ⁻) 328.95 (6 ⁺)	D M1+E2		0.21 5	
506.96	+	133.20^{+} 12	100" 84 # -15	3/3.76				
525 (2	+	$402.60^{\#} 8$	$100^{\#} 25$	$\begin{array}{c} 204.28 & (4^{+}) \\ 110.85 & (3^{+}) \\ 248.44 & 2^{+} \end{array}$	M1,E2 [@]		0.0168 8	
544.65	+	$479.25^{\#}$ 10	$100^{\#} 9$	548.44 2 56.43 1 ⁺	M1,E2 [@]		0.0105 9	
550		322.00 [#] 8 550	$100^{\#} 21$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	M1,E2 [@]		0.0316 7	E_{γ} : from (n,2n γ).
564.54	(4 ⁺)	170.6 <i>3</i> 235.8 <i>3</i>	100 18	$\begin{array}{c} 393.80 \\ 328.95 \\ (6^+) \end{array}$	M1+E2	+0.09 2	0.169 3	
566.79		201.30 [#] 7	100 [#]	365.49 (2+,3+,4+)	M1(+E2) [@]		0.130 23	
570.36		196.60 [#] 10	24 [#] 16	373.76 +				
		226.80 [#] 13	31 [#] 17	343.46 -				
		325.60 [#] 7	81 [#] 25	244.79 (4)+				
		459.50 [#] 15	100 [#] 42	$110.85 (3^+)$			0.051.4	
577.58	(8)	272.6 2	100.0	304.97 (7)	M1+E2		0.051 4	
580.64?		414.60'' 10	100"	166.04	M1,E2		0.0155 9	
591.34		363.50'' 10	21" 19	227.78 21				
(17.00	+	308./4" 0	100" 19	$222.02 1^{+}, 2^{+}$			0.0264.12	
017.88		$500.00^{\circ} 10$	$84^{\circ} 13$	$511.28 (2^{\circ})$ $110.85 (2^{+})$	M1,E2 ~		0.0304 13	
658 20		307.0° 3	100 29	$110.03 (3^{\circ})$ $303.80 (2)^+$				
676.69	+	204.30 I0 311.20 [#] 5	100	373.00 (3) 365.40 (2+2+4+)				
070.00		565.60 [#] .20	$41^{\#}$ 12	110.85 (2 , 3 , 4)	$F2(\pm M1)^{@}$		0 0068 8	
687 92	2-3-	$318 40^{\#} 15$	34# 0	369 57 -	$M1 F2^{(0)}$		0.0326 8	
561.72	2,5	687.90 [#] 10	$100^{\#} 17$	$0.0 2^{-}$	1111,122		0.0520 0	
703.14	+	391.85 [#] 5	$100^{\#} 23$	$311.28 (2^+)$	$M1(+E2)^{@}$		0.0181 8	
		475.40 [#] 10	$73^{\#} 27$	227.78 2+			0.0101 0	
714.70		535.70 [#] 10	100 [#] 8	178.96	M1.E2 [@]		0.0079 8	
		548.70 [#] 10	15 [#] 7	166.04	M1.E2 [@]		0.0074 8	
		$714.70^{\#}$ 10	16 [#] 9	0.0 2-				

7

From ENSDF

¹²⁶₅₃ I₇₃-7

 $^{126}_{53}\mathrm{I}_{73}$ -7

				Adopt	ed Levels, G	ammas (co	ntinued)
					γ ⁽¹²⁶ I) (c	continued)	
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult. [‡]	δ^{\ddagger}	α^{a}
735.20	(9 ⁻)	157.5 <i>4</i> 324.4 2 430.6 <i>3</i>	1.65 7 100.0 7 1.56 26	577.58 (8 ⁻) 410.73 (8 ⁻) 304.97 (7 ⁻)	M1+E2 M1+E2 E2	-0.06 1	0.28 7 0.0305 0.0131 5
748.69 794.6 800.09? 812.79	(6+)	383.20 [#] 10 503.7 3 233.30 [#] 8 469.32 [#] 10	100 [#] 100.0 100 [#] 100 [#]	365.49 (2 ⁺ ,3 ⁺ ,4 ⁺) 290.88 (5 ⁺) 566.79 343.46 ⁻	M1+E2		0.0092 9
819.48 865.58	(5 ⁺)	488.20" 10 301.1 3 471.7 3	<100" <100 100 21	$\begin{array}{c} 331.28 & (3) \\ 564.54 & (4^+) \\ 393.80 & (3)^+ \end{array}$	M1+E2 E2		0.0383 <i>15</i> 0.01010
868.99	(2+,3,4+)	$624.20^{\#} 10$ $641.20^{\#} 10$	$100^{\#} 64$ $36^{\#} 64$ $100^{\#}$	$\begin{array}{cccc} 244.79 & (4)^+ \\ 227.78 & 2^+ \\ 202.89 & (2)^+ \end{array}$			
890.30 907.24 921.6 941.4	(8 ⁺) (7 ⁺)	496.50" 10 405.7 2 630.7 3 530.6 3 636.4 3	100" 100 100 100 <i>27</i>	$\begin{array}{c} 393.80 (3)^{+} \\ 501.61 (7^{+}) \\ 290.88 (5^{+}) \\ 410.73 (8^{-}) \\ 304.97 (7^{-}) \end{array}$	M1+E2 E2		0.0165 <i>8</i> 0.00458
944.67 956.6 979.1 1000.19		601.20 [#] 20 752.3 [#] 12 609.5 [#] 3 521.20 [#] 10 287 87 [#] 8	100 [#] 100 [#] 100 [#] 100 [#]	343.46 - 204.28 (4 ⁺) 369.57 - 478.99 2 ⁺			
1076.81	(9 ⁻)	135.4 <i>3</i> 666.1 <i>4</i> 771.8 <i>2</i>	31.2 <i>10</i> 100.0 <i>5</i>	941.4 410.73 (8 ⁻) 304.97 (7 ⁻)	M1+E2 E2		0.0045 <i>6</i> 0.00277
1082.69? 1102.16 1129.80	(10 ⁻)	744.20 [#] 10 704.60 [#] 10 394.6 2	100 [#] 100 [#] 66.00 <i>11</i>	338.49 ⁻ 397.56 2 ⁻ ,3 ⁻ 735.20 (9 ⁻)	M1+E2	-0.05 1	0.0185
1210.9		719.0 2 345.3 <i>3</i> 646.4 <i>3</i>	100.0 <i>18</i> <52 100 <i>17</i>	$\begin{array}{c} 410.73 (8^{-}) \\ 865.58 (5^{+}) \\ 564.54 (4^{+}) \end{array}$	E2		0.00329
1239.3 1304.0	(10 ⁻)	661.8 <i>3</i> 568.9 <i>3</i> 726.4 <i>3</i>	100.0 100 8 82 4	577.58 (8 ⁻) 735.20 (9 ⁻) 577.58 (8 ⁻)	M1+E2 E2		0.0067 <i>8</i> 0.00321
1352.57	(9+)	410.8 5 445.4 2 617.4 2 774.9 3 941.8 3	35.0 <i>15</i> 100.0 <i>11</i> 17.1 <i>5</i> 21.1 <i>12</i>	941.4 907.24 (8 ⁺) 735.20 (9 ⁻) 577.58 (8 ⁻) 410.73 (8 ⁻)	M1+E2 E1+M2 E1+(M2) E1+M2	-0.21 <i>3</i> -0.03 <i>6</i> +0.19 <i>2</i>	0.0128 <i>9</i> 0.0024 <i>2</i> 0.0011
1379.4	(10 ⁻)	644.2 2	100.0 14	735.20 (9 ⁻)	M1+E2	+0.10 2	0.00552

 ∞

						γ ⁽¹²⁶ I) (c	ontinued)
E _i (level)	J_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	$\mathbf{E}_f = \mathbf{J}_f^{\pi}$	Mult. [‡]	δ^{\ddagger}	aa
1379.4	(10 ⁻)	802.0 5	100	577.58 (8 ⁻)			
1431.2	(8^+)	636.6 3	100	⁷ /94.6 (6 ⁺)	E2	0.05.2	0.00447
1432.56	(10^{-1})	80.0 2	55.6 /	$1352.57 (9^{\circ})$ 1220.2	MI+E2	+0.25 3	1.56.5
		355 7 3	35.0.17	1239.3 1076 81 (9 ⁻)	$F1 \pm M2$	$\pm 0.13.3$	0 0079 8
		697.4.2	100 4	$735\ 20\ (9^{-})$	$E1 \pm 1012$ E1	±0.15 5	0.0079 0
1468.51	(11^{-})	164.4 4	5.5.3	1304.0 (10 ⁻)	M1+E2		0.25.6
1100101	(11)	338.7 2	48.2 9	$1129.80 (10^{-})$	M1+E2	-0.052	0.0273
		733.3 2	100.0 5	735.20 (9 ⁻)	E2		0.0031
1567.1	(7^{+})	701.5 3	100	865.58 (5+)	E2		0.0035
1614.1	(9+)	692.6 <i>3</i>	100	921.6 (7+)	E2		0.00361
1832.1	(11^{+})	399.5 2	100	1432.56 (10 ⁺)	M1+E2	+0.25 3	0.0178 <i>3</i>
1893.8	(12^{-})	425.3 2	65.0 <i>19</i>	1468.51 (11-)	M1+E2	-0.09 2	0.0153 2
		764.0 2	100.0 19	1129.80 (10 ⁻)	E2		0.00284 4
1947.6		736.7 <i>3</i>	100.0	1210.9	E2		0.00310 5
2079.2	(11)	646.6 <i>3</i>	100	$1432.56 (10^+)$	D		
2131.0	(12^{+})	51.8 <i>3</i>	1.23 33	2079.2 (11)			
		299.1 4	4.93 17	1832.1 (11 ⁺)	M1+E2		0.0391 16
0105.0	(10-)	698.6 2	100.0 19	$1432.56 (10^{+})$	E2		0.00354 5
2137.2	(12^{-})	668.7 3	100.0 25	1468.51 (11 ⁻)	MI+E2		0.0045 6
		/5/.8 4	68 <i>3</i>	13/9.4 (10)	E2		0.00290 4
2170.9	(12^{-})	1007.4 3	14.8 1/	1129.80 (10) $1204.0 (10^{-})$	E2		0.00211.2
2170.8	(12)	800.8 3	100.0	1304.0 (10) 1822.1 (11 ⁺)	E2		0.00211 3
2215.92	(11°)	500.8.2	16 2 22	$1632.1 (11^{\circ})$ $1614.1 (0^{+})$	E2		0.00522.8
		781 2 5	30 5 15	1014.1 (9) 1432.56 (10+)	$M1\pm F2$		0.00322.8 0.0031.4
		834 5 3	17 0 29	1379.4 (10 ⁻)	F1+M2	+0.09.4	0.0051 4
		909.9.3	10.6.21	$1379.4 (10^{-})$ $1304.0 (10^{-})$	E1(+M2)	+0.07.8	
		1084.0 3	100.0 29	$1129.80 (10^{-})$	E1+M2	+0.093	
2322.2	(13^{-})	151.5 3	2.0 3	2170.8 (12 ⁻)	M1+E2		0.32 9
		428.4 5	5.6 3	1893.8 (12-)	M1+E2		0.0142 9
		853.7 2	100.0 20	1468.51 (11 ⁻)	E2		0.00219 3
2427.1	(11^{+})	813.0 <i>3</i>	100	1614.1 (9 ⁺)	E2		0.00245 4
2433.0	(12^{+})	219.0 2	100 6	2213.92 (11 ⁺)	M1+E2	+0.14 3	0.086 1
		600.7 <i>3</i>	55.1 <i>14</i>	$1832.1 (11^+)$	M1+E2	+0.20 4	0.0065 1
2497.6	(13^{+})	366.5 2	100 4	2131.0 (12 ⁺)	M1(+E2)	+0.02 3	0.0223 6
		665.6 4	12.1 4	$1832.1 (11^+)$	E2		0.00399 6
2597.9	(13 ⁻)	704.0 <i>3</i>	100	1893.8 (12 ⁻)	M1+E2	+0.09 3	0.00447 7
2644.4	(13^{+})	211.6 5	29.0 15	2433.0 (12 ⁺)	M1+E2	0.40	0.111 18
2700.0	(10+)	750.6 3	100 4	$1893.8 (12^{-})$	(E1+M2)	+0.19 4	0.0470.7
2708.0	(13')	2/4.9 2	100 3	2455.0 (12 ^r)	M1+E2	+0.14 5	0.04/07
		495.94	20.4 ð	$2213.92 (11^{\circ})$	E2		0.00886 13
		511.93		2131.0 (12)			

9

$^{126}_{53}I_{73}-9$

 $\gamma(^{126}I)$ (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	$\mathbf{E}_f \mathbf{J}_f^{\pi}$	Mult. [‡]	δ^{\ddagger}	α^{a}	
2708.0	(13^{+})	813.9 4	24.6 8	1893.8 (12 ⁻)	E1+M2	-0.12 6	0.00107 13	
2759.3	(14-)	437.0 2	74 <i>4</i>	2322.2 (13-)	M1+E2	-0.19 2	0.0143 2	
		865.4 2	100 <i>3</i>	1893.8 (12-)	E2		0.00212 3	
2800.9	(14^{+})	303.3 <i>3</i>	48.1 8	2497.6 (13+)	M1(+E2)	+0.02 2	0.0363 6	
		669.8 2	100 6	2131.0 (12+)	E2		0.00393 6	
2959.8	(14^{+})	251.8 2	100 5	2708.0 (13+)	M1+E2	+0.10 6	0.0592 9	
		526.7 4	35 <i>3</i>	2433.0 (12+)	E2		0.00741 11	
3018.1	(14^{+})	374.0 4	100.0	2644.4 (13+)	(M1+E2)	-0.18 3	0.0211 3	
3020.3	(15^+)	219.4 2	100 4	2800.9 (14+)	M1+E2	+0.23 3	0.0866 13	
		522.7 4	11.4 4	2497.6 (13+)	E2		0.00757 11	
3025.4	(14^{-})	703.4 4	100 6	2322.2 (13-)	M1+E2		0.0040 5	
		888.4 5	26.9 20	2137.2 (12-)	E2			
		1131.8 5	87 6	1893.8 (12-)	E2			
3170.9	(14^{-})	1000.1 5	100.0	2170.8 (12-)	E2			
3290.6	(15^{-})	531.3 5	8.0 7	2759.3 (14-)	M1+E2		0.0080 8	
		968.3 2	100.0 24	2322.2 (13-)	E2			
3358.9	(15^{+})	399.2 2	100 8	2959.8 (14+)	M1+E2	-0.07 5	0.0179 3	
		651.0 5	13.5 8	2708.0 (13+)	E2		0.00422 6	
3410.2	(16^{+})	389.9 2	100.0 18	3020.3 (15 ⁺)	M1+E2	0.04 3	0.0191 3	
		609.3 4	11.6 9	2800.9 (14+))			
3427.8	(15^{+})	409.8 5	60.9 22	3018.1 (14+)	(M1+E2)	-0.19 2	0.0168 3	
		467.8 <i>3</i>	100 20	2959.8 (14+))			
3575.8	(15^{-})	550.6 5	52 10	3025.4 (14-))			
		816.4 4	100 5	2759.3 (14-)	M1+E2		0.0028 4	
		977.8 <i>5</i>	46 5	2597.9 (13-)	E2			
		1253.7 5		2322.2 (13-))			
3603.5	(15^{-})	578.9 <i>5</i>	47 11	3025.4 (14-)	M1(+E2)	-0.04 5	0.0072 1	
		844.1 <i>3</i>	100 5	2759.3 (14 ⁻)	M1(+E2)	0.00 4	0.0029 1	
		1005.5 4	34.1 6	2597.9 (13-)	E2			
3674.7	(16 ⁻)	384.1 4	63 5	3290.6 (15 ⁻)	M1+E2	$-0.07 \ 4$	0.0198 3	
		915.4 <i>3</i>	100 4	2759.3 (14 ⁻)	E2			
3686.5		258.4 5	22 8	3427.8 (15 ⁺))			
		327.8 5	100 22	3358.9 (15 ⁺))			
		726.8 5		2959.8 (14+))			
3746.3	(16^{+})	387.3 4	100 10	3358.9 (15 ⁺)	M1(+E2)	0.00 4	0.0194 3	
		786.5 4	90 7	2959.8 (14 ⁺)	E2		0.00265 4	
3842.9		822.6 5		$3020.3 (15^+)$)			
		1042.5 5		$2800.9 (14^+)$)			
3847.9	(16^{+})	419.8 5	100.0	3427.8 (15 ⁺)	M1+E2		0.0150 9	
		830.1 5		3018.1 (14 ⁺))			
4019.0	(17^{+})	176.7 5		3842.9				
		608.7 <i>2</i>	100 3	3410.2 (16 ⁺)	M1+E2	+0.09 2	0.00633 9	

38.2 10 3020.3 (15⁺) E2

998.6 *3*

10

¹²⁶₅₃I₇₃-10

 $^{126}_{53}\mathrm{I}_{73}\text{--}10$

Adopted Levels, Gammas (continued)

γ (¹²⁶I) (continued)

E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	$\mathbf{E}_f \mathbf{J}_f^{\pi}$	Mult. [‡]	δ^{\ddagger}	α ^{<i>a</i>}	Comments
4097.3	(16^{-})	1071.7.5	100.0	3025.4 (14 ⁻)	E2			
4129.9	(10)	526.6.5	100.22	$3603.5 (15^{-})$				
		554.3.5	22.5	$3575.8 (15^{-})$				
		1104.8 5	50 10	$3025.4 (14^{-})$				
4184.3	(17^{-})	509.6 4	<62	$3674.7 (16^{-})$	M1+E2		0.0089 9	
	()	893.7 3	100.5	$3290.6 (15^{-})$	E2			
4235.8	(17^{+})	489.7 5	97 12	3746.3 (16 ⁺)	M1+E2		0.0099 9	
		877.0 5	100 6	3358.9 (15 ⁺)	E2		0.00206 3	
4293.7		883.8 5	100.0	3410.2 (16 ⁺)				
4314.3	(17^{-})	184.6 <i>3</i>	29 5	4129.9				
		216.7 5	51 13	4097.3 (16 ⁻)				
		710.7 <i>3</i>	100 15	3603.5 (15-)	E2		0.00339 5	
		738.5 <i>3</i>	31 3	3575.8 (15-)	E2		0.00308 5	
		1023.6 <i>3</i>	14.3 22	3290.6 (15 ⁻)	E2			
4328.4		480.5 <i>3</i>	100	3847.9 (16 ⁺)				
4501.5	(18^{+})	208.1 5	26 8	4293.7				
		482.5 4	88 8	4019.0 (17 ⁺)	M1+E2		0.0103 9	
		1091.2 <i>3</i>	100 8	3410.2 (16+)	E2			
4534.3	(18^{-})	350.0 5	18.2 15	4184.3 (17 ⁻)	M1(+E2)	+0.04 4	0.0251 4	
		859.6 <i>3</i>	100 6	3674.7 (16 ⁻)	E2		0.00215 3	
4650.6	(18^{+})	414.8 <i>3</i>	100 20	4235.8 (17 ⁺)	M1+E2		0.0155 9	
		904.0 5	100 12	3746.3 (16 ⁺)	E2			
4767.7		1081.2 5	100	3686.5				
4885.9	(19 ⁻)	571.6 <i>5</i>	100	4314.3 (17 ⁻)	E2		0.00593 9	
4982.1	(19 ⁺)	480.6 4	81 7	4501.5 (18+)	M1+E2		0.0104 9	
		963.1 4	100 4	4019.0 (17 ⁺)	E2			
5143.2	(19-)	608.9 <i>5</i>	<222	4534.3 (18 ⁻)				
		958.9 <i>5</i>	100 11	4184.3 (17 ⁻)	E2			
5217.2		566.4 5		4650.6 (18+)				
		981.6 5		4235.8 (17 ⁺)				
5424.8	(20^{+})	442.7 <i>3</i>	100 17	4982.1 (19 ⁺)	M1+E2	+0.14 4	0.0138 2	
		923.3 4	32 4	4501.5 (18 ⁺)	E2			
5529.1	(20^{-})	385.9 <i>5</i>	≈13	5143.2 (19 ⁻)				
		994.8 <i>5</i>	100 13	4534.3 (18 ⁻)	E2			
5569.7	(20^{-})	683.8 <i>5</i>	100	4885.9 (19 ⁻)	M1+E2	-0.07 3	0.00479 7	
5610.6		960.0 5		4650.6 (18 ⁺)				
5706.9	(21^{-})	137.2 5	22 3	5569.7 (20 ⁻)	M1+E2		0.44 14	
		821.0 5	100.0 10	4885.9 (19 ⁻)	E2		0.00239 4	DCO(2)=0.86 6
				· · · · · · · ·				POL=+0.14 12.
5954.4	(21^{+})	529.6 5	50 6	5424.8 (20 ⁺)	M1+E2		0.0081 8	
		972.3 4	100 8	4982.1 (19 ⁺)	E2			
6104.4		150.0 5	100 34	5954.4 (21 ⁺)				
		679.6 <i>5</i>	97 20	5424.8 (20^+)				

11

$^{126}_{53}\mathrm{I}_{73}\text{--}11$

From ENSDF

$\gamma(^{126}I)$ (continued)

E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_{f}^{π}	Mult. [‡]	α ^{<i>a</i>}
6231.7		702.6 5	≈14	5529.1	(20^{-})		
		1088.5 5	100 14	5143.2	(19 ⁻)		
6506.1	(22^{-})	799.2 5	100	5706.9	(21^{-})	M1+E2	0.0029 4
6659.9		1130.8 5	100	5529.1	(20^{-})		
6806.4	(23^{-})	300.3 5	≈19	6506.1	(22^{-})	M1+E2	0.039 2
		1099.5 5	100 13	5706.9	(21^{-})	E2	
7045.4?		941.0 <mark>&c</mark> 5	<100	6104.4			
		1091.2 ^{&c} 5	<100	5954.4	(21 ⁺)		
7117.4?		72.0 ^{&c} 5	<100	7045.4?			
		1013.0 ^{&c} 5	<100	6104.4			

[†] From ${}^{124}Sn({}^{7}Li,5n\gamma)$ unless otherwise noted. [‡] From ${}^{124}Sn({}^{7}Li,5n\gamma)$ unless otherwise noted.

From 126 Te(p,n γ). @ From 126 Te(p,n γ).

[&] Weak transition.

12

^{*a*} Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

^b Multiply placed with intensity suitably divided.

^c Placement of transition in the level scheme is uncertain.

Legend

 $--- \rightarrow \gamma$ Decay (Uncertain)

Adopted Levels, Gammas

Level Scheme

Intensities: Relative photon branching from each level

 $^{126}_{53}I_{73}$

From ENSDF

Level Scheme (continued)

Intensities: Relative photon branching from each level

 $^{126}_{53}\mathrm{I}_{73}$ -14

14

15

 $^{126}_{53}\mathrm{I}_{73}$ -15

 $^{126}_{53}\mathrm{I}_{73}$ -15

Level Scheme (continued)

Adopted Levels, Gammas

Legend

From ENSDF

Level Scheme (continued)

Intensities: Relative photon branching from each level

Level Scheme (continued)

Intensities: Relative photon branching from each level

Level Scheme (continued)

Intensities: Relative photon branching from each level

 $^{126}_{53}\mathrm{I}_{73}$

Level Scheme (continued)

Intensities: Relative photon branching from each level @ Multiply placed: intensity suitably divided

¹²⁶₅₃I₇₃

 $^{126}_{53}\mathrm{I}_{73}$

Adopted Levels, Gammas (continued)

 $^{126}_{53}I_{73}$