	Histor	у		
Туре	Author	Citation	Literature Cutoff Date	
Full Evaluation	H. Iimura, J. Katakura, S. Ohya	NDS 180, 1 (2022)	1-Oct-2021	

Parent: ¹²⁶Ba: E=0.0; $J^{\pi}=0^+$; $T_{1/2}=100 \text{ min } 2$; $Q(\varepsilon)=1681 \ 16$; $\%\varepsilon+\%\beta^+$ decay=100.0 1976Pa11: ¹¹⁵In(¹⁶O,5n)¹²⁶La ε decay, ¹²¹Sb(¹¹B,6n), ¹³³Cs(p,8n), chem, E γ , $\gamma\gamma$, ce, $\beta\gamma$. Others: 1975Pa10, 1973B108. The decay scheme is that proposed by 1976Pa11 on the basis of $\gamma\gamma$ and E γ sums.

^{126}Cs	Levels
~ 0	101010

E(level) [†]	J ^π ‡	T _{1/2}	E(level) [†]	Jπ‡	E(level) [†]	Jπ‡
0.0	1^{+}	1.643 min 17	489.41 13	$1,0^{-}$	876.9 <i>3</i>	$1,0^{-}$
217.87 10			508.51 <i>21</i>		903.5 <i>3</i>	$1,0^{-}$
233.63 8	1+		538.88 17	$1,0^{-}$	1097.48 13	1^{+}
241.00 9	$0^{-}, 1^{-}, 2^{-}$		542.67 11	$0,1,2,3^+$	1140.5 3	$1,0^{-}$
257.60 8	$0^+, 1^+$		589.45 21		1210.75 15	1^{+}
281.20 12	$0, 1, 2, 3^+$		681.84 <i>12</i>	1^{+}	1234.32 11	1^{+}
328.28 13	$0, 1, 2, 3^+$		709.53 17	$1,0^{-}$	1241.63 16	1^{+}
347.82 21			776.6 3	0,1	1293.01 12	1+
454.7 <i>3</i>			781.51 22	0,1		
457.11 16	0,1		841.92 18	$1,0^{-}$		

 † From a least-squares fit to the E($\gamma's)$ by evaluators. ‡ From the Adopted Levels.

ε, β^+ radiations

E(decay)	E(level)	Ιβ ⁺ #	$\mathrm{I}\varepsilon^{\dagger \#}$	Log ft	$I(\varepsilon + \beta^+)^{\dagger \#}$	Comments
(388 16)	1293.01		9.1 10	4.56 7	9.1 10	ε K=0.8334 11; ε L=0.1300 9; ε M+=0.0366 3
(439 16)	1241.63		3.5 5	5.09 8	3.5 5	εK=0.8363 9; εL=0.1278 7; εM+=0.03589 20
(447 16)	1234.32		9.6 10	4.67 6	9.6 10	εK=0.8366 8; εL=0.1275 6; εM+=0.03580 20
(470 16)	1210.75		3.7 5	5.13 7	3.7 5	εK=0.8377 7; εL=0.1268 6; εM+=0.03555 18
(541 16)	1140.5		0.94 17	5.86 9	0.94 17	εK=0.8402 6; εL=0.1248 4; εM+=0.03492 13
(584 16)	1097.48		5.1 6	5.19 6	5.1 6	εK=0.8415 5; εL=0.1239 4; εM+=0.03462 11
(778 16)	903.5		0.69 13	6.32 9	0.69 13	εK=0.8452 3; εL=0.12108 18; εM+=0.03370 6
(804 16)	876.9		0.94 17	6.22 9	0.94 17	εK=0.8456 3; εL=0.12081 17; εM+=0.03361 6
(839 16)	841.92		1.1 4	6.19 16	1.1 4	εK=0.8460 2; εL=0.12047 15; εM+=0.03350 5
(899 16)	781.51		0.27 12	6.86 20	0.27 12	εK=0.8467 2; εL=0.11996 13; εM+=0.03333 5
(904 16)	776.6		0.29 10	6.84 15	0.29 10	εK=0.8468 2; εL=0.11992 13; εM+=0.03332 5
(971 16)	709.53		2.0 5	6.06 11	2.0 5	εK=0.8474 2; εL=0.1194 1; εM+=0.03316 4
(999 16)	681.84		5.4 7	5.66 6	5.4 7	εK=0.8477 2; εL=0.1192 1; εM+=0.03310 4
(1142 16)	538.88		1.6 <i>3</i>	6.30 9	1.6 <i>3</i>	εK=0.8487 1; εL=0.11845 8; εM+=0.03284 3
(1192 16)	489.41		3.8 5	5.97 6	3.8 5	εK=0.8489; εL=0.11822 8; εM+=0.03277 3
(1224 16)	457.11		0.41 21	6.96 23	0.41 21	εK=0.8491; εL=0.11807 8; εM+=0.03272 3
(1423 16)	257.60	0.0050 21	1.8 7	6.45 17	1.8 7	av Eβ=189.6 71; εK=0.8477 4; εL=0.1170 1; εM+=0.03240 4
(1447 16)	233.63	0.060 11	16.8 18	5.49 5	16.9 18	av Eβ=200.1 71; εK=0.8472 5; εL=0.1169 2; εM+=0.03235 4
(1463 16)	217.87	0.0078 24	1.9 5	6.45 12	1.9 5	av Eβ=207.0 70; εK=0.8468 5; εL=0.11678 12; εM+=0.03232 4
(1681 16)	0.0	0.58 12	30 6	5.37 9	31 [‡] 6	av Eβ=302.2 70; εK=0.8350 14; εL=0.11452 24; εM+=0.03167 7

$^{126}\mathbf{Ba}\ \varepsilon$ decay 1976Pa11 (continued)

ε, β^+ radiations (continued)

- [†] From inensity balances at each level, except for the ground state feeding. Note that transition multipolarities are not generally known so the imbalances are from I γ data only. Inclusion of internal conversion would make only small differences. [‡] From equilibrium condition for the chain decay of ¹²⁶Ba – ¹²⁶Cs – ¹²⁶Xe. [#] Absolute intensity per 100 decays.

$\gamma(^{126}\mathrm{Cs})$

I γ normalization: from I($\varepsilon + \beta^+$ to g.s.)=31% 6; from equilibrium condition for the chain decay of ¹²⁶Ba - ¹²⁶Cs - ¹²⁶Xe; see ¹²⁶Cs β^+ decay.

E_{γ}^{\dagger}	Ι _γ ‡ <i>с</i>	E_i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. <mark>b</mark>	α^{d}	Comments
94.5 <i>3</i> 106.9 <i>2</i>	0.6 2 1.2 3	328.28 454.7	0,1,2,3+	233.63 347.82	1+			
126.5 2	1.1 3	347.82		217.87				
192.5 5		681.84	1+	489.41	1,0-			I_{γ} : Weak (1976Pa11). Other $I_{\gamma} < 1$ (1973Bl08).
201.1 2 ^x 203.8 3	1.5 <i>4</i> 0.82 <i>20</i>	709.53	1,0-	508.51				().
208.2 2	1.3 3	489.41	1,0-	281.20	0,1,2,3+			
$x_{213.5}^{\#} 3$	0.43 20	017 07		0.0	1+			
217.97	10.0 10	217.87	1.0-	0.0	1^{+} 0+ 1+			
231.7" 3	2.2.3	489.41	1,0 1 ⁺	257.60	$0^{+},1^{+}$	M1 E2	0.002.7	$\alpha(K) = 0.076$ 3: $\alpha(L) = 0.013$ 3:
255.0 1	40.2 25	255.05	1	0.0	1	1011,122	0.092 7	$\alpha(M)=0.00264\ 67$
								$\alpha(N)=0.00055 \ 14; \ \alpha(O)=7.3\times10^{-5} \ 15;$
								$\alpha(P)=2.73\times10^{-6}\ 17$
220.2.5	112	457 11	0.1	017.07				α (K)exp=0.088, α (L)exp=0.016.
239.5 5	1.1 3	457.11	0,1 $0^{-}1^{-}2^{-}$	217.87	1+	F1	0.0194	$\alpha(\mathbf{K}) = 0.01673.24; \alpha(\mathbf{L}) = 0.00214.3;$
241.0 1	17./ 12	241.00	0,1,2	0.0	1	LI	0.0194	$\alpha(M)=0.0004357$
								$\alpha(N) = 9.13 \times 10^{-5} \ 13; \ \alpha(O) = 1.248 \times 10^{-5}$
								18; $\alpha(P)=5.74\times10^{-7}$ 8
	10 - 10				. +		0.070.0	α (K)exp=0.027.
257.6 1	18.7 10	257.60	$0^+, 1^+$	0.0	1+	M1,E2	0.069 3	$\alpha(K)=0.0573 \; 9; \; \alpha(L)=0.0092 \; 18;$
								$\alpha(N)=0.00194$ $\alpha(N)=0.00040.8: \alpha(O)=5.3\times10^{-5}.8:$
								$\alpha(P)=2.07\times10^{-6}$ 16
								α (K)exp=0.053.
^x 269.3 3	0.44 20							
281.2 2	7.5 8	281.20	$0,1,2,3^+$	0.0	1+			
284.9 3	1.0 3	542.67	$0,1,2,3^+$	257.60	$0^{+}, 1^{+}$			
290.8 3	1.3.3	508.51 841.02	1.0-	21/.8/	1.0-			
308.9.3	0.51	641.92 542.67	0.123^{+}	233.63	1,0 1 ⁺			
320 5 5	0.32	1097 48	1^+	776.6	0.1			
x324.8 5	0.6 2	1077.10	1	//0.0	0,1			
328.3 2	5.1 5	328.28	$0,1,2,3^{+}$	0.0	1+			
347.6 [@] f		347.82		0.0	1+			
348.5 2	1.8 4	589.45		241.00	0-,1-,2-			
353.5 <i>3</i>	1.3 <i>3</i>	681.84	1+	328.28	$0,1,2,3^+$			
392.5 2	1.9 4	1234.32	1+	841.92	1,0-			
400.6 2	2.8 4	681.84	1+	281.20	0,1,2,3+			

Continued on next page (footnotes at end of table)

¹²⁶Ba ε decay **1976Pa11** (continued)

$\gamma(^{126}Cs)$ (continued)

E_{γ}^{\dagger}	$I_{\gamma}^{\ddagger c}$	E _i (level)	\mathbf{J}_i^{π}	$E_f \qquad J_f^{\pi}$
415.5 3	1.5 3	1097.48	1+	681.84 1+
441.0.5	1.0.2	681.84	1+	$241.00 0^{-} \cdot 1^{-} \cdot 2^{-}$
452.8.3	0.45.20	1234.32	1+	781.51 0.1
457.2.2	1.7.3	457.11	0.1	$0.0 1^+$
475.5.3	0.8.2	709.53	1.0^{-}	233.63 1+
489.3.2	7.1.7	489.41	1.0-	0.0 1+
508.7 @ f		508 51	-,-	0.0 1+
535 1 3	002	776.6	0.1	$241.00 0^{-} 1^{-} 2^{-}$
538.0.2	185	538.88	1.0^{-}	$241.00 \ 0 \ ,1 \ ,2$
542 5 2	-1.0 J	542.67	$0.1.2.3^+$	$0.0 1^+$
5+2.52	2.2 4	542.07	0,1,2,5	0.0 1
548.7 3	1.6.3	8/6.9	1,0	328.28 0,1,2,3
551.2.3	1.8 3	1140.5	1,0	529.45
558.5 5	0.3 I	1097.48	1.0-	538.88 1,0 281.20 0.1.2.2 ⁺
501.1 5	0.7 3	841.92	1,0	281.20 0,1,2,5
383.33	1.0 5	1295.01	1 0-	709.55 1,0
008.5° 5	1.0° 2	841.92	1,0	233.03 1
608.5 ^{ej} 5	1.0 ^e 2	1097.48	1+	489.41 1,0-
611.2 5	1.2 2	1293.01	1+	681.84 1+
640.6 3	1.4 2	1097.48	1+	457.11 0,1
643.1 5	0.9 2	1097.48	1+	454.7
667.8 3	0.7 3	1210.75	1' 1+	542.67 0,1,2,3
681.8 2	10.8 11	681.84	1 '	0.0 1
685.6 3	1.1 2	903.5	1,0	217.87
691.6 2	2.0 2	1234.32	1 ' 1+	542.67 0,1,2,3
098.0 3	0.72	1241.03	1+	542.07 0,1,2,5
702.0 3	0.2 I	1241.03	1 0-	558.88 1,0 0.0 1 ⁺
709.8 3	5.70	109.33	1,0	480.41 1.0-
744.5 5	1.42	1203.01	1 1+	409.41 1,0 542.67 0.1.2.3 ⁺
x779.0.5	0.3 1 0 4 2	1295.01	1	542.07 0,1,2,5
781 5 3	112	781 51	0.1	0.0 1+
835.9.5	0.4 2	1293.01	1+	457.11 0.1
839.5 5	1.2.3	1097.48	1+	$257.60 0^+.1^+$
841.6 5	2.6 5	841.92	1.0^{-}	0.0 1+
856.5 3	1.8 3	1097.48	1+	241.00 0-,1-,2-
863.9 2	3.6 7	1097.48	1^{+}	233.63 1+
876.8 5	0.7 2	876.9	$1,0^{-}$	0.0 1+
882.5 5	0.7 2	1210.75	1+	328.28 0,1,2,3+
899.2 5	0.5 2	1140.5	1,0-	241.00 0-,1-,2-
903.5 5	0.6 2	903.5	$1,0^{-}$	$0.0 1^+$
905.9 5	0.9 2	1234.32	1+	328.28 0,1,2,3+
^x 910.0 5	0.3 1			
913.5 5	1.1 2	1241.63	1+	328.28 0,1,2,3+
929.6 5	1.5 <i>3</i>	1210.75	1+	281.20 0,1,2,3+
953.1 <i>3</i>	1.2 3	1234.32	1+	281.20 0,1,2,3+
964.4 5	0.5 2	1293.01	1+	328.28 0,1,2,3+
976.8 2	4.4 4	1234.32	1'	257.60 0 ⁺ ,1 ⁺
977.2.2	1.6"	1210.75	1 ' 1 +	$255.05 1^{+}$
984.2 3	2.8 6	1241.63	1 ' 1+	257.60 0',1'
993.4 J	0.0 10	1234.32	1 ' 1 +	$241.00 \ 0 \ ,1 \ ,2$
1000.8 3	122	1234.32	1 1+	233.03 1 233.63 1 $+$
1006.0 5	1.2 2	1241.03	1 1 ⁺	$233.03 1^{\circ}$ 281.20 0.1.2.2 ⁺
1011.0 5	1.0 4	1293.01	1 1 ⁺	$201.20 \ 0,1,2,3$ 257 60 0 ⁺ 1 ⁺
1052.0 2	3.0 5	1293.01	1+	241.00 012-

Continued on next page (footnotes at end of table)

¹²⁶Ba ε decay **1976Pa11** (continued)

$\gamma(^{126}Cs)$ (continued)

E_{γ}^{\dagger}	$I_{\gamma}^{\ddagger C}$	E_i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_f^{π}
1059.4 5	1.0 2	1293.01	1^{+}	233.63	1+
1097.5 5	1.7 4	1097.48	1^{+}	0.0	1^{+}
1210.8 3	4.5 9	1210.75	1^{+}	0.0	1^{+}
1234.4 3	4.8 9	1234.32	1^{+}	0.0	1^{+}
1241.8 3	2.6 5	1241.63	1^{+}	0.0	1^{+}
1293.0 <i>3</i>	9.1 10	1293.01	1^{+}	0.0	1^{+}

[†] From 1976Pa11.

[‡] From I γ in ¹²⁶Cs $\varepsilon + \beta$; decay, I γ measured in ¹²⁶Ba for ¹²⁶Cs and to ¹²⁶Xe source in equilibrium. See ¹²⁶Cs $\varepsilon + \beta^+$ decay.

[#] Assignment to ¹²⁶Ba decay is not certain (1976Pa11).

[@] Not included in authors' table, but shown as a tentative placement in authors' decay scheme (1976Pa11).

[&] This γ is seen in $\gamma\gamma$ coin spectra of Ba decay and is included in the Ba decay scheme although 1976Pa11 lists it as belonging to Cs.

^{*a*} From $\gamma\gamma$ -coin (1976Pa11).

^b From $\alpha(K)$ data of 1976Pa11 based on relative I γ and I(ce(K)) data normalized so that $\alpha(K)(388.6\gamma \text{ in } {}^{126}\text{Xe})$ has the theoretical E2 value, unless otherwise noted.

^c For absolute intensity per 100 decays, multiply by 0.408 32.

^d Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

^e Multiply placed with undivided intensity.

^f Placement of transition in the level scheme is uncertain.

 $x \gamma$ ray not placed in level scheme.

¹²⁶₅₅Cs₇₁-6

¹²⁶₅₅Cs₇₁

6

¹²⁶Ba ε decay 1976Pa11

