Adopted Levels, Gammas

	Histor	у		
Туре	Author	Citation	Literature Cutoff Date	
Full Evaluation	H. Iimura, J. Katakura, S. Ohya	NDS 180, 1 (2022)	1-Oct-2021	

 $Q(\beta^{-})=55545$; S(n)=69794; $S(p)=150\times10^{2}5$; $Q(\alpha)=-1006420$ 2021Wa16

1978Ga18: U(n,F) on-line mass separation; measured half-life, γ .

1981Ru07: U(n,F) chemical separation; measured half-life, γ .

1986Go10: U(n,F) on-line mass separation; measured half-life, γ , β . 2015Lo04: ¹²⁶Cd nuclide produced at RIBF-RIKEN facility in ⁹Be(²³⁸U,F) reaction at E=345 MeV/nucleon. Measured half-life by ion- β correlation and maximum likelihood fits to the decay curve.

¹²⁶Cd Levels

Cross Reference (XREF) Flags

A	126 Ag β^- decay (52 ms)
В	126 Ag β^- decay (92 ms)
C	9 Be(136 Xe,X γ):isomer
D	Coulomb excitation

E(level) [‡]	$J^{\pi \dagger}$	T _{1/2}	XREF	Comments
0.0	0+	0.514 s 8	ABCD	$%β^-=100$ T _{1/2} : from weighted av of 0.506 s <i>15</i> (1978Ga18), 0.51 s <i>I</i> (1981Ru07), 0.60 s <i>3</i> (1986Go10) and 0.513 s <i>6</i> (2015Lo04). All data are from γ(t) except data of 2015Lo04 from ion-β decay curve. $\langle r^2 \rangle ({}^{126}\text{Cd}) - \langle r^2 \rangle ({}^{114}\text{Cd}) = 0.585 \text{ fm}^2 8$ (uncorrelated) <i>90</i> (correlated) from collinear laser spectroscopy (2018Ha30)
651.96 <i>10</i>	(2 ⁺)	8.9 ps +27-17	ABCD	Q=+0.27 +11-7 $T_{1/2}$: From Coulomb excitation (2014II01). O: Coulomb excitation (2014II01)
1466 86 23	(4^{+})		ABC	Q. Coulomb exertation (201 mor).
1579.17 17	(2^+)		A	
1734.7 4	(-)		A	J^{π} : 2014Ba18 proposed spin-parity of $(0^+, 4^+)$.
1802.7 4			Α	J^{π} : 2014Ba18 proposed spin-parity of $(0^+, 4^+)$.
1868.6 <i>3</i>	(5 ⁻)		BC	
1943.56 24			Α	J^{π} : 2014Ba18 proposed spin-parity of (3 ⁺).
1951.0 4			BC	J^{π} : 2014Ba18 and 2007Ho22 proposed spin-parity of (7 ⁻).
2120.5 4			В	J^{π} : 2014Ba18 proposed spin-parity of (7 ⁻), while 2005Ka45 proposed 6 ⁻ ,7 ⁻ .
2206.3 <i>3</i>			Α	
2244.6 4			В	J^{π} : 2014Ba18 proposed spin-parity of (6 ⁺).
2323.3 5			С	
2468.9 4			Α	
2545.1 5			A	
2584.2 5			В	
2605.6.5			В	
2611.0 5			В	
2028.9 0			N B	
2666 4 5			R	
2605.4.5			B	
2093.4 5			с С	
2730.2.6			B	
2757.6 5			B	
2758.0 4			c	
2777.8 5			В	
2835.38 23			Α	

Adopted Levels, Gammas (continued)

¹²⁶Cd Levels (continued)

E(level) [‡]	XREF	Comments
2844.4 6	В	
2878.8 5	Α	
2930.4 6	В	
2976.6 6	В	
2977.7 5	С	
2977.7+x	C	Additional information 1.
		Isomer in the microsecond range from observation of delayed γ rays.
3181.5 7	В	
3232.8 5	В	
3361.1 6	В	
3386.1 5	Α	
3605.1 6	Α	
3755.3 6	В	

[†] From systematics.

[‡] Least-squares fit to γ -ray energies.

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ} ‡	E_f	\mathbf{J}_f^{π}	Mult.	Comments
651.96	(2^{+})	651.9 <i>1</i>	100	0.0	0^{+}	[E2]	B(E2)(W.u.)=14 3
1466.86	(4^+)	814.9 2	100	651.96	(2^{+})		
1579.17	(2^{+})	927.1 2	100 7	651.96	(2^{+})		
		1579.7 <i>3</i>	5.1 6	0.0	0+ ´		
1734.7		1082.7 [#] 3	100 [#]	651.96	(2^{+})		
1802.7		1150.7 <i>3</i>	100	651.96	(2^+)		
1868.6	(5^{-})	401.7 2	100	1466.86	(4^+)		
1943.56		364.5 <i>4</i>	74 15	1579.17	(2^+)		
		1291.6 <i>3</i>	100 10	651.96	(2^{+})		
1951.0		82.5 2	100	1868.6	(5^{-})		
2120.5		169.5 <i>3</i>	100 13	1951.0			
		251.9 <i>3</i>	70 5	1868.6	(5^{-})		
2206.3		262.8 <i>3</i>	100 24	1943.56			
		1554.2 <i>4</i>	82 24	651.96	(2^{+})		
2244.6		777.7 3	100	1466.86	(4^{+})		
2323.3		856.4 <i>4</i>	100	1466.86	(4^{+})		
2468.9		1816.9 <i>3</i>	100	651.96	(2^{+})		
2545.1		1893.1 4	100	651.96	(2^{+})		
2584.2		715.6 <i>3</i>	100	1868.6	(5 ⁻)		
2605.6		737.0 <i>3</i>	100	1868.6	(5^{-})		
2611.0		490.5 <i>3</i>	100	2120.5			
2628.9		1162.0 5	100	1466.86	(4^{+})		
2661.5		1082.7 [#] 4	100 [#] 20	1579.17	(2^+)		
		2009.1 4	30 8	651.96	(2^{+})		
2666.4		545.9 <i>3</i>	100	2120.5			
2695.4		826.8 <i>3</i>	100	1868.6	(5 ⁻)		
2729.5		405.1 7	100	2323.3			
2730.2		119.2 <i>3</i>	100	2611.0			
2757.6		889.0 <i>3</i>	100	1868.6	(5 ⁻)		
2758.0		807.0 2		1951.0			
2777.8		657.1 4	100 34	2120.5			
		826.9 <i>3</i>	11.7 <i>17</i>	1951.0			

Continued on next page (footnotes at end of table)

γ (¹²⁶Cd)

Adopted Levels, Gammas (continued)

γ (¹²⁶Cd) (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	$E_f J_f^{\pi}$	E _i (level)	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	$E_f \qquad J_f^{\pi}$
2835.38		2183.4 2	100	651.96 (2+)	3181.5	570.5 5	100	2611.0
2844.4		233.4 <i>3</i>	100	2611.0	3232.8	1364.2 4	100	1868.6 (5 ⁻)
2878.8		2226.8 5	100	651.96 (2 ⁺)	3361.1	1492.5 5	100	1868.6 (5 ⁻)
2930.4		1061.8 5	100	1868.6 (5-)	3386.1	1919.2 4	100	1466.86 (4+)
2976.6		856.0 4	100	2120.5	3605.1	2025.9 5	100	1579.17 (2 ⁺)
2977.7		219.7 2	100 26	2758.0	3755.3	1886.7 5	100	1868.6 (5 ⁻)
		248.2 2	24 11	2729.5				

[†] From 126AG B- DECAY, except as noted.
[‡] From 126AG B- DECAY, except as noted.
[#] Multiply placed with intensity suitably divided.

Adopted Levels, Gammas

Level Scheme

Intensities: Relative photon branching from each level @ Multiply placed: intensity suitably divided

¹²⁶₄₈Cd₇₈

4