¹²⁵Sb β^- decay 1998Sa55,1976Wa13,1990Me15

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	J. Katakura	NDS 112, 495 (2011)	1-Jan-2010

Parent: ¹²⁵Sb: E=0.0; $J^{\pi}=7/2^+$; $T_{1/2}=2.75856$ y 25; $Q(\beta^-)=766.7$ 21; % β^- decay=100.0

The decay scheme is from 1998Sa55,1999Sa73.

1998Sa55,1999Sa73: HPGe, γ ; mini-orange spectrometer, Ice.

1998Ro20: $\gamma\gamma(\theta)$, mixing ratio.

1997De38: HPGe, $\gamma\gamma(\theta)$, mixing ratio.

1993Fa02: HPGe γ.

1992De26: Plastic scin $\beta \gamma(t)$.

1992Sm02: Semi γ , $4\pi\beta$ - γ coin.

1991Go22: Mini-orange spectrometer, Ice.

1990Me15: HPGe *γ*.

1990He05: HPGe *γ*.

1990Lo03: Semi γ , $4\pi\beta$ - γ coin.

1984Iw03: Semi γ.

1983Si14: Semi γ , $\gamma\gamma(\theta)$.

1976Wa13: Compton-suppression spectrometer.

1972Sa08: Plastic scin $\beta\gamma(t)$.

1970Ma20: Mag spect $\beta ce(t)$, (ce)(ce)(t).

1968Ko08: Plastic scin $\beta\gamma$ -coin, $\beta\gamma$ (t).

1966Ma49: Magnetic spectrograph ce.

Others: semi γ : 1968In01, 1968St16, 1969Au09, 1970Na12, 1971Ma08, 1973Gu10, 1977Ar10, 1979Pr08, 1977Ge12, 1980Ro22, 1988RaZM 1992ScZZ; magnetic spectrograph ce: 1959Na06; semi ce: 1970Na12; $\gamma\gamma(\theta)$: 1964In02, 1968In01, 1969Kn03, 1969Si05, 1970Ba69, 1970Cr07, 1970Wy01, 1971Ba44, 1971Ro17, 1971Wy02, 1972Ba12; oriented nuclei $\gamma(\theta)$: 1968An05, 1968St16, 1971Kr11; liquid scin branching ratio: 1998Gr13; recommended standard: 1979He19, 2000He14.

¹²⁵Te Levels

E(level) [†]	J ^π ‡	T _{1/2}	Comments
0.0	$1/2^{+}$	stable	
35.491 <i>3</i>	$3/2^{+}$	1.482 ns 8	$T_{1/2}$: From Adopted Levels.
144.776 11	$11/2^{-}$	57.40 d 15	%IT=100
			$T_{1/2}$: From Adopted Levels.
321.090 11	9/2-	0.672 ns <i>13</i>	T _{1/2} : From weighted average of βγ(t), βce(t): 0.695 ns 15 (1968Ko08), 0.68 ns 3 (1969Ho42), 0.76 ns 2 (1970Be47), 0.68 ns 3 (1970Ma20), 0.65 ns 3 (1970Be51), 0.704 ns 21 (1972Sa33), 0.67 ns 4 (1972Be21), 0.647 ns 8 (1992De26); Other: 0.87 ns 8 (1966In02).
402.09 4	$7/2^{+}$		
443.554 6	$3/2^{+}$	19.1 ps 6	$T_{1/2}$: From Adopted Levels. Other: ≤ 100 ps $\beta ce(t)$ (1970Ma20).
463.365 <i>3</i>	5/2+	13.2 ps 5	$T_{1/2}$: From Adopted Levels. Others: 19 ps 3 $\beta\gamma$ (t) (1970Be47), 14 ps 6 β ce(t) (1970Ma20), 26 ps 8 $\beta\gamma$ (t) (1972Sa08).
525.227 9	$7/2^{-}$	≤160 ps	$T_{1/2}$: From $\beta\gamma(t)$ (1968Ko08). Other: $\leq 500 \text{ ps }\beta \text{ce}(t)$ (1970Ma20).
538.60 5	$(1/2^+)$		-,
636.090 4	7/2+	40 ps 20	$T_{1/2}$: From βce(t) (1970Ma20). Others: ≤160 ps βγ(t) (1968Ko08), ≤70 ps βγ(t) (1992De26).
642.204 4	$7/2^{+}$	≤70 ps	$T_{1/2}$: From $\beta \gamma(t)$ (1992De26). Other: ≤ 600 ps $\beta ce(t)$ (1970Ma20).
652.90 5	(5/2)	-	
671.443 <i>4</i> 728.8 <i>5</i>	5/2+ 3/2+	1.26 ps 6	T _{1/2} : From Adopted Levels. Other: 40 ps 15 β ce(t) (1970Ma20).

[†] From a least-squares fit (by evaluators) to $E\gamma's$.

[‡] From Adopted Levels.

125 Sb β^- decay 1998Sa55,1976Wa13,1990Me15 (continued)

β^- radiations

E(decay)	E(level)	$\mathrm{I}\beta^{-\dagger}$	Log ft	Comments
(37.9 [‡] 22)	728.8	< 0.000069	>11.0	av E β =9.63 56
(95.3 21)	671.443	13.42 17	6.93 <i>3</i>	av $E\beta = 24.9158$
(113.8 21)	652.90	0.055 3	9.56 4	av $E\beta = 30.0359$
$(124.5\ 21)$	642.204	5.75 7	7.661 24	av $E\beta = 33.0259$
(130.6 21)	636.090	17.88 19	7.233 23	av $E\beta = 34.74 \ 60$
(241.5 21)	525.227	1.609 19	9.120 14	av $E\beta = 67.48 \ 65$
(303.3 21)	463.365	40.3 4	8.041 11	av $E\beta = 86.94\ 68$
				E(decay): 302 4 from 1966Ma49.
(323.1 21)	443.554	0.052 13	11.02 11	av $E\beta = 93.3469$
(364.6 21)	402.09	0.0222 11	11.562 23	av $E\beta = 106.97 \ 70$
(445.6 21)	321.090	7.18 8	9.342 9	av E β =134.50 73
				E(decay): 444 8 from 1966Ma49.
(621.9 21)	144.776	13.6 9	9.77 ¹ <i>u</i> 3	av $E\beta = 215.4778$
				$I\beta^{-}$: From 1998Gr13; others: 13.4% (1959Na06),13.7% (1964Ma30),
				determined from a F-K plot.
				E(decay): 621 2 determined from spectrum with $\Delta J=2$ -yes shape. Value
				from weighted average of 619 3 (1959Na06), 623 3 (1964Ma30), 621 3
				(1966Ma49).

[†] Absolute intensity per 100 decays.
[‡] Existence of this branch is questionable.

γ (¹²⁵Te)

I γ normalization: from $\Sigma((I(\gamma+ce) \text{ to g.s.}+144.8 \text{ level}))=100-13.6\% 9$, with $I(\gamma+ce)(35\gamma)$ deduced from feeding to the 35 level.

 $\boldsymbol{\omega}$

	$\gamma\gamma(\theta)$) data							
cascade	A ₂			A ₄		ref			
204 - 176	-0.471 -0.405	11 12	0.0	032 46		1997De38 1998R	o20		
321 - 176	-0.144	13 12	A	00 1		1997De38	~ 2 0		
166 - 204	-0.144 -0.41	2	0.0	04 4 		1998R 1998R	o20		
F	L. <i>Cg</i>	E:(level)	Iπ	Ec	Iπ	Mult d	Se	$\alpha^{\dagger f}$	Comments
10.80.6	0.060.3	462 265	$\frac{5}{10^{+}}$	142 554	$\frac{f}{2/2^+}$	IM11		10.02.10	$\alpha(L) = 8.70, 15; \alpha(M) = 1.76, 2; \alpha(N + 1) = 0.284, 7$
19.80 0	0.009 5	405.505	5/2	445.554	5/2			10.95 19	$\alpha(L)=0.79$ IS, $\alpha(M)=1.70$ S, $\alpha(N+)=0.384$ 7 $\alpha(N)=0.346$ 6; $\alpha(O)=0.0373$ 7
4									E_{γ} : From 1998Sa55.
35.489+ 5	14.78 <i>3</i>	35.491	3/2+	0.0	$1/2^{+}$	M1+E2	0.031 3	13.69	$\alpha(K)=11.70\ 17;\ \alpha(L)=1.596\ 25;\ \alpha(M)=0.319\ 5;\ \alpha(N+)=0.0697$
									$\alpha(N)=0.0630 \ 10; \ \alpha(O)=0.00674 \ 10$
									I_{γ} : From intensity balance. Experimental value is 15.2 <i>10</i> .
									$\alpha(L) \exp[=1.70 \ 17, \ L1:L2:L3=100:9.3:1.9.$
^x 58.43 ^{&} 5	0.042 ^{&} 20								E_{γ} : Not placed in the level scheme. But also reported in 1983Si14 and 1993Fa02. 1983Si14 proposed the transition from 729 keV to 671-keV level.
61.85 ^{&} 16	0.007 ^{&} 3	525.227	7/2-	463.365	$5/2^{+}$	[E1]		0.750 12	α (K)=0.641 <i>10</i> ; α (L)=0.0875 <i>14</i> ; α (M)=0.0173 <i>3</i> ;
									$\alpha(N+)=0.00367.6$ $\alpha(N)=0.00334.6; \alpha(O)=0.000331.6$
81.02 ^{&} 4	0.017 ^{&} 1	402.09	7/2+	321.090	9/2-	E1		0.354	α (K)=0.304 5; α (L)=0.0402 6; α (M)=0.00796 12; α (N+)=0.001697 24
									$\alpha(N)=0.001541\ 22;\ \alpha(O)=0.0001558\ 22$ $\alpha(K)=0.07\ 11$
110.895 ^a 12	0.0035 4	636.090	7/2+	525.227	7/2-	[E1]		0.1468	$\alpha(K)=0.1266\ 18;\ \alpha(L)=0.01628\ 23;\ \alpha(M)=0.00323\ 5;$
									α (N+)=0.000692 10 α (N)=0.000698 0; α (O)=6.46×10 ⁻⁵ 0
									$\alpha(N) = 0.000020 \ 9; \ \alpha(O) = 0.40 \times 10^{-5} \ 9 \ \alpha(K) \exp[-1.11 \ 24.$
116.955 ^a 11	0.887 9	642.204	7/2+	525.227	7/2-	E1		0.1264	$\alpha(K)=0.1090 \ 16; \ \alpha(L)=0.01398 \ 20; \ \alpha(M)=0.00277 \ 4;$

 $^{125}_{52}$ Te₇₃-3

 $^{125}_{52}{
m Te}_{73}$ -3

				¹²⁵ Sb	β^- decay	7 1998Sa5	5,1976Wa13,	,1990Me15 (c	ontinued)
						$\gamma(^{125})$	Te) (continued	<u>l)</u>	
Eγ	I_{γ}^{cg}	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. ^d	δ^{e}	$_{lpha}^{\dagger f}$	Comments
									α (N+)=0.000595 9 α (N)=0.000539 8; α (O)=5.56×10 ⁻⁵ 8 α (K)exp=0.081 7. E _y : 1998Sa55 report 116.956 16.
132.81 ^{&} 14	0.0029 ^{&} 19	671.443	5/2+	538.60	(1/2 ⁺)	[E2]		0.624	$\begin{array}{l} \alpha(\mathrm{K}) = 0.471 \ 7; \ \alpha(\mathrm{L}) = 0.1225 \ 18; \ \alpha(\mathrm{M}) = 0.0254 \ 4; \\ \alpha(\mathrm{N}+) = 0.00522 \ 8 \\ \alpha(\mathrm{N}) = 0.00480 \ 7; \ \alpha(\mathrm{O}) = 0.000424 \ 7 \end{array}$
172.719 [‡] 8	0.646 24	636.090	7/2+	463.365	5/2+	M1(+E2)	-0.004 8	0.1484	$\alpha(K)=0.1280 \ 18; \ \alpha(L)=0.01642 \ 23; \ \alpha(M)=0.00328 \ 5; \ \alpha(N+)=0.000719 \ 10 \ \alpha(N)=0.000649 \ 9; \ \alpha(O)=7.04\times10^{-5} \ 10 \ \alpha(K)\exp=0.096 \ 8.$
176.314 [#] 2	23.11 5	321.090	9/2-	144.776	11/2-	M1+E2	-0.60 2	0.164 3	α(K)=0.1376 21; α(L)=0.0216 5; α(M)=0.00437 9; α(N+)=0.000936 19 α(N)=0.000850 17; α(O)=8.57×10-5 16 δ: Weighted av from -0.58 7 (1997De38), -0.59 2 (1998Ro20) and -0.62 3 (from the L subshell ratios and the sign from alignment measurement (1972Ke19)). α(K)exp=0.138 10, K/L=6.5 5, L1:L2:L3=100:23.8:18.6.
178.842 [‡] 5	0.114 8	642.204	7/2+	463.365	5/2+	M1+E2		0.18 5	α (K)=0.15 3; α (L)=0.026 11; α (M)=0.0052 23; α (N+)=0.0011 5 α (N)=0.0010 5; α (O)=0.00010 4 α (K)exp=0.140 23.
198.654 [‡] 11	0.0432 20	642.204	7/2+	443.554	3/2+	[E2]		0.1534	$\alpha(K)=0.1233 \ 18; \ \alpha(L)=0.0241 \ 4; \ \alpha(M)=0.00493 \ 7; \ \alpha(N+)=0.001032 \ 15 \ \alpha(N)=0.00944 \ 14; \ \alpha(\Omega)=8.85\times10^{-5} \ 13$
204.138 [@] 10	1.070 <i>21</i>	525.227	7/2-	321.090	9/2-	M1+E2	+1.60 3	0.1270 <i>19</i>	$\alpha(N)=0.000716717, \alpha(O)=0.05X167179$ $\alpha(K)=0.1039 \ 15; \ \alpha(L)=0.0185 \ 3; \ \alpha(M)=0.00377 \ 6; \ \alpha(N)=0.000796 \ 12 \ \alpha(N)=0.000726 \ 11; \ \alpha(O)=7.00\times10^{-5} \ 11 \ 6: \ Weighted av \ form +1.3 \ 2 \ (1997De38), +1.74 \ 9 \ (1998Ro20) \ and +1.60 \ 2 \ (1998Ro20). \ \alpha(K)=x_0=0.090 \ 10 \ 10 \ 10 \ 10 \ 10 \ 10 \ 10 \$
208.077 [@] 5	0.837 14	671.443	5/2+	463.365	5/2+	M1+E2	+0.105 14	0.0901	$\alpha(\mathbf{K}) \approx 2.000 \ 10.$ $\alpha(\mathbf{K}) = 0.0777 \ 11; \ \alpha(\mathbf{L}) = 0.00999 \ 15; \ \alpha(\mathbf{M}) = 0.00199 \ 3; \ \alpha(\mathbf{N}+) = 0.000437 \ 7 \ \alpha(\mathbf{N}) = 0.000394 \ 6; \ \alpha(\mathbf{O}) = 4.27 \times 10^{-5} \ 6 \ \alpha(\mathbf{K}) \exp = 0.086 \ 5.$
209.32 ^{&} 9	0.152 ^{&} 9	652.90	(5/2)	443.554	$3/2^{+}$				
227.891 [‡] 10	0.443 6	671.443	5/2+	443.554	3/2+	(M1+E2)		0.083 13	$\begin{aligned} &\alpha(\mathrm{K}) = 0.069 \; 9; \; \alpha(\mathrm{L}) = 0.011 \; 4; \; \alpha(\mathrm{M}) = 0.0022 \; 7; \\ &\alpha(\mathrm{N}+) = 0.00047 \; 14 \\ &\alpha(\mathrm{N}) = 0.00043 \; 13; \; \alpha(\mathrm{O}) = 4.3 \times 10^{-5} \; 10 \\ &\alpha(\mathrm{K}) \exp = 0.101 \; 6. \end{aligned}$

4

 $^{125}_{52}\mathrm{Te}_{73}$ -4

				¹²⁵ Sb	β^- deca	y 1998Sa	55,1976Wa13,	1990Me15 (co	ntinued)	
γ ⁽¹²⁵ Te) (continued)										
E_{γ}	I_{γ}^{cg}	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. ^d	δ^{e}	$_{lpha}^{\dagger f}$	Comments	
314.95 ^{<i>a</i>} 11	0.0136 16	636.090	7/2+	321.090	9/2-	(E1)		0.00833 12	$\begin{aligned} \alpha = 0.00833 \ 12; \ \alpha(\text{K}) = 0.00723 \ 11; \ \alpha(\text{L}) = 0.000891 \ 13; \\ \alpha(\text{M}) = 0.0001766 \ 25; \ \alpha(\text{N}+) = 3.85 \times 10^{-5} \\ \alpha(\text{N}) = 3.47 \times 10^{-5} \ 5; \ \alpha(\text{O}) = 3.71 \times 10^{-6} \ 6 \\ \alpha(\text{K}) \exp = 0.043 \ 9. \end{aligned}$	
321.04 ^{<i>a</i>} 4	1.404 9	642.204	7/2+	321.090	9/2-	E1(+M2)	-0.003 13	0.00793 12	$\begin{aligned} &\alpha = 0.00793 \ 12; \ \alpha(\text{K}) = 0.00688 \ 10; \ \alpha(\text{L}) = 0.000847 \ 13; \\ &\alpha(\text{M}) = 0.0001680 \ 25; \ \alpha(\text{N}+) = 3.66 \times 10^{-5} \\ &\alpha(\text{N}) = 3.30 \times 10^{-5} \ 5; \ \alpha(\text{O}) = 3.53 \times 10^{-6} \ 6 \\ &\alpha(\text{N}) = 3.30 \times 10^{-5} \ 5; \ \alpha(\text{O}) = 3.53 \times 10^{-6} \ 5 \\ &\alpha(\text{K}) \exp = 0.011 \ 7. \\ &\delta: \ \text{From } 1998\text{Ro20}. \end{aligned}$	
331.82 ^{&} 6	0.0085 & 8	652.90	(5/2)	321.090	9/2-					
366.56 ^{&} 11	0.027 2	402.09	$7/2^{+}$	35.491	3/2+					
380.452 [‡] 8	5.124 19	525.227	7/2-	144.776	11/2-	E2		0.0182	$\begin{aligned} &\alpha(\mathbf{K}) = 0.01537 \ 22; \ \alpha(\mathbf{L}) = 0.00230 \ 4; \ \alpha(\mathbf{M}) = 0.000465 \ 7; \\ &\alpha(\mathbf{N}+) = 9.95 \times 10^{-5} \ 14 \\ &\alpha(\mathbf{N}) = 9.04 \times 10^{-5} \ 13; \ \alpha(\mathbf{O}) = 9.15 \times 10^{-6} \ 13 \end{aligned}$	
0 -	0_								α (K)exp=0.0142 6, K/L=6.8 5.	
401.95 ^{&} 12	0.021 2	402.09	7/2+	0.0	1/2+	[M3]		0.193	$ \begin{array}{l} \alpha(\mathrm{K}) = 0.1600 \ 23; \ \alpha(\mathrm{L}) = 0.0268 \ 4; \ \alpha(\mathrm{M}) = 0.00552 \ 8; \\ \alpha(\mathrm{N}+) = 0.001200 \ 17 \\ \alpha(\mathrm{N}) = 0.001086 \ 16; \ \alpha(\mathrm{O}) = 0.0001137 \ 16 \end{array} $	
408.065 [‡] 10	0.623 6	443.554	3/2+	35.491	3/2+	M1+E2	+1.50 7	0.01500	$\alpha(K)=0.01278 \ 18; \ \alpha(L)=0.00179 \ 3; \ \alpha(M)=0.000359 \ 5; \ \alpha(N+)=7.75\times10^{-5} \ 11 \ \alpha(N)=7.02\times10^{-5} \ 10; \ \alpha(O)=7.30\times10^{-6} \ 11 \ \alpha(K)\exp=0.0169 \ 12.$	
427.874 [#] 4	100	463.365	5/2+	35.491	3/2+	M1+E2	-0.538 11	0.01360	$\alpha(K)=0.01172 \ 17; \ \alpha(L)=0.001511 \ 22; \ \alpha(M)=0.000302$ 5; $\alpha(N+)=6.59\times10^{-5} \ 10$	
									α (N)=5.95×10 ⁻⁵ 9; α (O)=6.40×10 ⁻⁶ 9 α (K)exp=0.0114 3, K/L=7.3 5, L1:L2:L3=100:12.7:7.6.	
443.555 [@] 9	1.035 6	443.554	3/2+	0.0	1/2+	M1+E2	-2.3 1	0.01169	α (K)=0.00995 <i>14</i> ; α (L)=0.001398 <i>20</i> ; α (M)=0.000281 <i>4</i> ; α (N+)=6.06×10 ⁻⁵ <i>9</i>	
									$\alpha(N)=5.49\times10^{-5} 8; \alpha(O)=5.69\times10^{-6} 8$ $\alpha(K)\exp=0.011 3.$	
463.365 [#] 4	35.45 10	463.365	5/2+	0.0	1/2+	E2		0.01014	$\alpha(K)=0.00861 \ 12; \ \alpha(L)=0.001226 \ 18; \ \alpha(M)=0.000246$ $4; \ \alpha(N+)=5.31\times10^{-5} \ 8$ $\alpha(N)=4.81\times10^{-5} \ 7; \ \alpha(O)=4.96\times10^{-6} \ 7$	
									K/L=7.4 3, L1:L2:L3=100:16.9:12.5.	
489.73 ^{&} 8	0.0046 ^{&} 23	525.227	$7/2^{-}$	35.491	$3/2^{+}$					
491.29 <mark>&</mark> <i>14</i>	0.016 ^{&} 8	636.090	$7/2^{+}$	144.776	$11/2^{-}$					
497.37 ^a 12	0.0108 12	642.204	7/2+	144.776	11/2-	[M2]		0.0312	$\alpha(K)=0.0267 4; \alpha(L)=0.00364 6; \alpha(M)=0.000733 11;$	

S

From ENSDF

	125 Sb β^- decay 1998Sa55,1976Wa13,1990Me15 (continued)										
$\gamma(^{125}\text{Te})$ (continued)											
E_{γ}	I_{γ}^{cg}	E _i (level)	\mathbf{J}_i^π	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. ^d	δ^{e}	$_{lpha}^{\dagger f}$	Comments		
$\alpha(N+)=0.0001607 \ 23$ $\alpha(N)=0.0001450 \ 21; \ \alpha(O)=1.566\times10^{-5} \ 22$ E _y : 1998Sa55 report 497.41 \ 14.											
503.10 ^{&} 6	0.013 ^{&} 6	538.60	$(1/2^+)$	35.491	$3/2^{+}$)		
538.62 ^{&} 12	0.0047 ^{&} 25	538.60	$(1/2^+)$	0.0	$1/2^{+}$						
600.597 [#] 2	59.62 16	636.090	7/2+	35.491	3/2+	E2		0.00494 7	$ \begin{array}{l} \alpha = 0.00494 \ 7; \ \alpha(\text{K}) = 0.00423 \ 6; \ \alpha(\text{L}) = 0.000571 \ 8; \\ \alpha(\text{M}) = 0.0001143 \ 16; \ \alpha(\text{N}+) = 2.48 \times 10^{-5} \ 4 \\ \alpha(\text{N}) = 2.24 \times 10^{-5} \ 4; \ \alpha(\text{O}) = 2.36 \times 10^{-6} \ 4 \\ \alpha(\text{K}) \exp = 0.00418 \ 13, \ \text{K/L} = 7.4 \ 4, \ \text{L1:L2:L3} = 100:12.3:9.4. \end{array} $		
606.713 [#] 3	16.83 <i>6</i>	642.204	7/2+	35.491	3/2+	E2		0.00481 7	α =0.00481 7; α (K)=0.00412 6; α (L)=0.000555 8; α (M)=0.0001111 16; α (N+)=2.41×10 ⁻⁵ 4 α (N)=2.18×10 ⁻⁵ 3; α (O)=2.29×10 ⁻⁶ 4 Mult.: From α (K)exp=0.00383 17, K/L=5.7 5.		
617.40 ^{&} 14	0.018 ^{&} 2	652.90	(5/2)	35.491	$3/2^{+}$						
635.950 [#] 3	37.9 3	671.443	5/2+	35.491	3/2+	M1+E2	+0.332 3	0.00515 8	α =0.00515 8; α (K)=0.00446 7; α (L)=0.000553 8; α (M)=0.0001100 16; α (N+)=2.42×10 ⁻⁵ 4 α (N)=2.18×10 ⁻⁵ 3; α (O)=2.37×10 ⁻⁶ 4 α (K)exp=0.00428 17, K/L=7.9 4, L1:L2:L3=100:12.8:7.1.		
652.8 ^{&} 4	0.009 ^{&} 3	652.90	(5/2)	0.0	$1/2^{+}$						
671.441 [#] 6	6.049 <i>19</i>	671.443	5/2+	0.0	1/2+	E2		0.00371 6	$\alpha = 0.00371 \ 6; \ \alpha(K) = 0.00318 \ 5; \ \alpha(L) = 0.000421 \ 6; \\ \alpha(M) = 8.41 \times 10^{-5} \ 12; \ \alpha(N+) = 1.83 \times 10^{-5} \ 3 \\ \alpha(N) = 1.652 \times 10^{-5} \ 24; \ \alpha(O) = 1.748 \times 10^{-6} \ 25 \\ \alpha(K) \exp = 0.00333 \ 16, \ K/L = 8.8 \ 9.$		
693.3 ^{bh} 5	< 0.00031	728.8	$3/2^{+}$	35.491	$3/2^{+}$				I _γ : From 1976Wa13. Other: 0.0015 6 (1983Si14).		
693.3"** 5<0.00031/28.8 $3/2^{+}$ 35.491 $3/2^{+}$ I † Additional information 1. ‡ From 1990He05. ‡ Values recommended by 2000He14. $^{\textcircled{e}}$ Given in table 7 of 2000He14 but not in their table of recommended values. $^{\&}$ Seen only by 1998Sa55. a From 1990Me15. b From 1990Le03, 1990He05, 1990Me15, 1992Sm02, 1993Fa02 and 1998Sa55, unless otherwise noted. d From $\alpha(\exp)$ and $\gamma\gamma(\theta)$, unless otherwise noted. e From adopted gammas, unless otherwise indicated. f $\alpha(K)(xep and K/L from weighted av of Ice's (1966Ma49, 1991Go22 and 1998Sa55) and the adopted I(\gamma's) if \alpha(K)(463.4\gamma)=0.008610(E2), unless otherwise$											

¹²⁵Sb β^- decay 1998Sa55,1976Wa13,1990Me15 (continued)

 $\gamma(^{125}\text{Te})$ (continued)

noted. L1:L2:L3 values are from 1966Ma49.

^g For absolute intensity per 100 decays, multiply by 0.296 3.

^h Placement of transition in the level scheme is uncertain. ^x γ ray not placed in level scheme.

-

¹²⁵Sb β^- decay 1998Sa55,1976Wa13,1990Me15

