¹²⁴Sn(d,pγ) **1976Ma09**

Туре	Author	Citation	Literature Cutoff Date	
Full Evaluation	J. Katakura	NDS 112, 495 (2011)	1-Jan-2010	

E=5-10 MeV, enriched target, excitation function; semi γ , $\gamma\gamma$ -coin, p γ -coin, semi ce.

The level scheme is that proposed by 1976Ma09. The evaluators added tentatively the 618.0-, 937.2-, and 1060.1-keV levels from energy fit.

E(level) ^{\dagger} J ^{π‡} T _{1/2} [‡] Comments	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	

[†] From a least-squares fit to $E\gamma's$ (evaluators).

[‡] From Adopted Levels.

$\gamma(^{125}\text{Sn})$ Mult.[@] $\alpha^{\dagger \#}$ Eγ I_{γ} E_i(level) J_i^{π} \mathbf{E}_{f} J_{f}^{π} Comments 187.6 2 100 215.06 $1/2^{+}$ 27.50 3/2+ 618.0 4 9.0 18 618.0 $(9/2^{-})$ 0.0 $11/2^{-}$ (M1,E2) 0.0044 4 $\alpha = 0.0044 4$; α (K)=0.0038 3; α (L)=0.000482 20; α (M)=9.4×10⁻⁵ 4; $\alpha(N+..)=1.92\times10^{-5}$ 9 $\alpha(N)=1.77\times10^{-5} 8$; $\alpha(O)=1.50\times10^{-6} 13$ Mult.: From α (K)exp=0.0031 6. x633[&] 1 715.4 & 2 930.4 215.06 1/2+ 1/2,3/2 827.5 8 855.0? $7/2^{+}$ 27.50 3/2+ 0.00199 3 α =0.00199 3; α (K)=0.001720 25; 12.7 13 (E2) α (L)=0.000216 3; α (M)=4.22×10⁻⁵ 6; α (N+..)=8.56×10⁻⁶ 13 $\alpha(N)=7.90\times10^{-6}$ 12; $\alpha(O)=6.63\times10^{-7}$ 10 Mult.: From adopted gammas; M1,E2 from $\alpha(K) \exp = 0.0016 \ 3.$ 857.4 6 2.4 2 1072.5 215.06 1/2+ 1/2,3/2 902.6 7 6.5 6 930.4 1/2,3/2 27.50 3/2+ [M1,E2] 0.00180 18 α =0.00180 18; α (K)=0.00156 16; α (L)=0.000190 *16*; α (M)=3.7×10⁻⁵ *3*; α (N+..)=7.6×10⁻⁶ 7 $\alpha(N)=7.0\times10^{-6}$ 6; $\alpha(O)=6.0\times10^{-7}$ 7 937.2 6 7.4 7 937.2 $(7/2)^{-}$ $0.0 \quad 11/2^{-}$ (E2) 0.001488 21 $\alpha = 0.001488 \ 21; \ \alpha(K) = 0.001291 \ 19;$ α (L)=0.0001596 23; α (M)=3.12×10⁻⁵ 5; α (N+..)=6.35×10⁻⁶

Continued on next page (footnotes at end of table)

				¹²⁴ Sn(d,p	γ)	1976Ma09	(continued)			
γ ⁽¹²⁵ Sn) (continued)										
Eγ	I_{γ}	E_i (level)	${ m J}^{\pi}_i$	\mathbf{E}_{f}	\mathbf{J}_{f}^{π}	Mult.@	$\alpha^{\dagger \#}$	Comments		
973.3 10	3.8 10	1188.0	1/2+,3/2+,5/2+	215.06	1/2+	M1,E2	0.00151 <i>15</i>	$ \begin{array}{c} \alpha(\mathrm{N}) = 5.85 \times 10^{-6} \ 9; \ \alpha(\mathrm{O}) = 4.96 \times 10^{-7} \ 7 \\ \mathrm{Mult.: \ From \ adopted \ gammas; \ M1,E2} \\ \mathrm{from} \ \alpha(\mathrm{K}) \exp = 0.0012 \ 2. \\ \alpha(\mathrm{K})(\mathrm{M1}) = 0.0016, \\ \alpha(\mathrm{K})(\mathrm{E2}) = 0.0013. \\ \alpha = 0.00151 \ 15; \ \alpha(\mathrm{K}) = 0.00132 \ 14; \\ \alpha(\mathrm{L}) = 0.000159 \ 14; \ \alpha(\mathrm{M}) = 3.1 \times 10^{-5} \\ 3; \ \alpha(\mathrm{N}+) = 6.4 \times 10^{-6} \ 6 \\ \alpha(\mathrm{N}) = 5.9 \times 10^{-6} \ 5; \ \alpha(\mathrm{O}) = 5.1 \times 10^{-7} \ 6 \\ \mathrm{Mult.: \ From} \ \alpha(\mathrm{K}) \exp = 0.0018 \ 4. \\ \alpha(\mathrm{K})(\mathrm{M1}) = 0.00146, \\ \alpha(\mathrm{K})(\mathrm{E2}) = 0.00118. \\ \end{array} $		
1032.6 7	4.3 [‡] 4	1060.1	$7/2^+$	27.50	$3/2^+$					
1045.0" 9	2.8 2	10/2.5	1/2, 3/2 $1/2^+ 3/2^+ 5/2^+$	27.50	$3/2^{+}$	M1 E2	0.00103.10	$\alpha = 0.00103 \ 10^{\circ} \ \alpha(K) = 0.00000 \ 0^{\circ}$		
1100.170	4.01 4	1100.0	1/2 ,3/2 ,3/2	27.50	5/2	W11,E2	0.00103 10	$\begin{aligned} &\alpha(L) = 0.00105 \ 10, \ \alpha(R) = 0.00090 \ 9, \\ &\alpha(L) = 0.000107 \ 9; \ \alpha(M) = 2.09 \times 10^{-5} \\ &I8 \ \alpha(N+) = 7.07 \times 10^{-6} \ 2I \\ &\alpha(N) = 3.9 \times 10^{-6} \ 4; \ \alpha(O) = 3.4 \times 10^{-7} \ 4; \\ &\alpha(IPF) = 2.78 \times 10^{-6} \ 2I \\ &\text{Mult.: From } \alpha(K) \exp = 0.0011 \ 2. \\ &\alpha(K)(M1) = 0.00099, \\ &\alpha(K)(E2) = 0.00081. \end{aligned}$		
1232.1 <i>11</i>	4.9 7	1259.6?	(5/2)+	27.50	3/2+	M1,E2	0.00091 8	$\alpha = 0.00091 \ 8; \ \alpha(K) = 0.00079 \ 8;$ $\alpha(L) = 9.4 \times 10^{-5} \ 8; \ \alpha(M) = 1.84 \times 10^{-5}$ $16; \ \alpha(N+) = 1.44 \times 10^{-5} \ 5$ $\alpha(N) = 3.5 \times 10^{-6} \ 3; \ \alpha(O) = 3.0 \times 10^{-7} \ 3;$ $\alpha(IPF) = 1.07 \times 10^{-5} \ 7$ Mult.: From $\alpha(K) \exp = 0.0007 \ 2.$ $\alpha(K)(M1) = 0.00086,$ $\alpha(K)(E2) = 0.00071.$		
1512.8 9	6.4 [‡] 6	1540.3	$(5/2)^+$	27.50	$3/2^{+}$			-(,()) 0.0000711		
1729 ^{&a} 1		1756.5?	1/2,3/2	27.50	3/2+					

[†] Additional information 2. [‡] The uncertainty in the author's value of 6.37 6 is probably a typo. The evaluator assigns an uncertainty of 10%, typical of the uncertainties in the other strong transitions.

[#] α (K)exp if mult(902.6 γ)=M1 (1976Ma09).

[@] From $\alpha(K)$ exp normalized to $\alpha(K)(902.6\gamma)=0.00173$, the M1 theory from 1968Ha53. Mult(902.6 γ) has not been determined, but from level scheme, it must be M1 or E2.

[&] Weak γ ray; no intensity was given (1976Ma09).

^{*a*} Placement of transition in the level scheme is uncertain.

 $x \gamma$ ray not placed in level scheme.

