Adopted Levels, Gammas

		Туре	Autho	History r Citation	Literature Cutoff Date
	F	ull Evaluation	J. Katak	ura NDS 112,495 (2011)	1-Jan-2010
$Q(\beta^{-})=5.42\times10$ Note: Current e	3 3; S(n)=7.68×10 valuation has used	4^3 ; S(p)=1.10 the following 0	5×10 ⁴ 3; (Q record 5	$Q(\alpha) = -8.50 \times 10^3 \ 3 \qquad 2012 \text{V}$ 418 307683 43 11072	Va38 2 31-8514 30 2009AuZZ.
				¹²⁵ In Levels	
			Cr	oss Reference (XREF) Flags	
			A B C	¹²⁵ Cd $β^-$ decay (0.68 s) ¹²⁵ Cd $β^-$ decay (0.48 s) ¹²⁵ In IT decay:5.0 ms	
E(level) [†]	\mathbf{J}^{π}	T _{1/2}	XREF		Comments
0.0	9/2+	2.36 s 4	AB	$%β^-=100$ μ=+5.502 9; Q=+0.71 4 T _{1/2} : Weighted average of 2 (1983Sh07) and 2.33 s 4 J ^π : J from LASER spectross 1362.5 level in ¹²⁵ Sn. μ,Q: From collinear fast-bea also 1989Ra17 and 2005	2.50 s 10 (1986Go10), 2.43 s 15 (1974Gr29). copy (1987Eb02); log ft =4.4 to 7/2 ⁺ , am LASER spectroscopy (1987Eb02). See St24 compilation.
360.12 9	1/2 ⁽⁻⁾	12.2 s 2	A	%β ⁻ =100 μ=-0.433 4 (1987Eb02) Additional information 1. T _{1/2} : Weighted average of f and 12.2 s <i>I</i> (1974Gr29). J ^π : J from LASER spectross μ: From collinear fast-beam 1989Ra17 and 2005St24	12.2 s 3 (1986Go10), 15.1 s 11 (1983Sh07) copy (1987Eb02); π from systematics. a LASER spectroscopy (1987Eb02). See also compilation.
796.44 <i>10</i> 1027.40 <i>4</i> 1099.48 <i>3</i> 1173.064 <i>24</i> 1219.80 <i>11</i> 1563.88 <i>6</i> 1577.60 <i>5</i> 1588.57 <i>14</i> 1810 38 <i>13</i>	$(3/2^{-}) (11/2^{+}) (5/2^{+}) (13/2^{+}) (1/2,3/2,5/2^{-}) (9/2,11/2,13/2^{+})$		A BC A BC A B B A	J ^{π} : γ to 1/2 ⁽⁻⁾ , systematics. J ^{π} : Log <i>ft</i> =5.77 from (11/2 ⁻) J ^{π} : Log <i>ft</i> =5.09 from (3/2 ⁺) J ^{π} : γ 's to 9/2 ⁺ and (11/2 ⁺), J ^{π} : Log <i>ft</i> =5.77 from (3/2 ⁺) J ^{π} : Log <i>ft</i> =6.01 from (11/2 ⁻)	T), systematics.), γ to $9/2^+$. systematics.), γ to $1/2^{(-)}$. T), γ to $9/2^+$.
1909.70 <i>4</i> 1953.1 <i>5</i> 1958.08 <i>6</i> 1970.90 <i>7</i>	(13/2 ⁺) (15/2 ⁺)		BC C B B	J^{π} : γ to 9/2 ⁺ and (13/2 ⁺), le J^{π} : M1 γ to (13/2 ⁺). No tra	og ft =5.29 from (11/2 ⁻); systematics. Insition to levels with J<13/2.
2009.4 7	(19/2 ⁺)	9.4 µs 6	C	J^{π} : E2 γ to (15/2 ⁺). No tran	nsitions to levels with J< $15/2$.
2064.60 5 2101.40 8 2147.18 <i>10</i> 2161.2 9	(9/2,11/2,13/2) (9/2,11/2,13/2) (5/2 ⁺) (23/2 ⁻)	5.0 ms 15	B B A C	$I_{1/2}$: From 1998FoZ Y. J^{π} : Log <i>ft</i> =5.76 from (11/2 ⁻) J^{π} : Log <i>ft</i> =5.55 from (11/2 ⁻) J^{π} : Log <i>ft</i> =4.75 from (3/2 ⁺) J^{π} : M2 γ to (19/2 ⁺); 2004S however, leads to 15/2 ⁻ a relative strong beta feed i $T_{1/2}$: From 1998FoZY.).), γ to $9/2^+$. c42 assign 25/2 ⁺ . This assignment, assignment of 1910-keV level to which as observed from $(11/2^-)$ state.
2217.83 5	(9/2,11/2,13/2)		В	Configuration=(π g _{9/2} hole J ^{π} : Log <i>ft</i> =5.51 from (11/2)	⊗ 7 ⁻ Sn Core). -).

Continued on next page (footnotes at end of table)

Adopted Levels, Gammas (continued)

¹²⁵In Levels (continued)

E(level) [†]	J^{π}	XREF	Comments
2248.50 18	(9/2,11/2,13/2)	В	J^{π} : Log ft=5.73 from (11/2 ⁻).
2252.65 11	$(9/2, 11/2, 13/2^+)$	В	J^{π} : Log ft=5.85 8 from (11/2 ⁻), γ to 9/2 ⁺ .
2349.44 14	(1/2, 3/2, 5/2)	Α	J^{π} : Log <i>ft</i> =5.18 from (3/2 ⁺).
2378.16 4	(9/2,11/2,13/2)	В	J^{π} : Log ft=5.75 from (11/2 ⁻).
2381.28 11	(1/2, 3/2, 5/2)	Α	J^{π} : Log <i>ft</i> =5.05 from (3/2 ⁺).
2392.594 25	$(9/2^{-}, 11/2^{-})$	В	J^{π} : Log ft=5.00 from (11/2 ⁻), γ to 9/2 ⁺ .
2411.48 9	(9/2,11/2,13/2)	В	J^{π} : Log <i>ft</i> =5.81 from (11/2 ⁻).
2497.43 11	$(1/2^+, 3/2^+)$	Α	J^{π} : Log <i>ft</i> =4.80 from (3/2 ⁺); γ to 1/2 ⁽⁻⁾ and (5/2 ⁺).
2572.76 6	(9/2,11/2,13/2)	В	J^{π} : Log <i>ft</i> =5.80 from (11/2 ⁻).
2585.08 14	$(1/2^+, 3/2^+, 5/2^+)$	Α	J^{π} : Log <i>ft</i> =4.96 from (3/2 ⁺).
2616.37 3	$(9/2^{-}, 11/2^{-})$	В	J^{π} : Log ft=4.98 from (11/2 ⁻), γ to 9/2 ⁺ .
2631.58 9	(9/2,11/2,13/2)	В	J^{π} : Log ft=5.79 from (11/2 ⁻).
2640.29 <i>3</i>	$(9/2^{-}, 11/2^{-}, 13/2^{-})$	В	J^{π} : Log <i>ft</i> =4.92 from (11/2 ⁻).
2641.26 16	(1/2,3/2,5/2)	Α	J^{π} : Log <i>ft</i> =5.38 from (3/2 ⁺).
2641.67 5	$(9/2^{-}, 11/2^{-})$	В	J^{π} : Log ft=4.55 from (11/2 ⁻), γ to 9/2 ⁺ .
2802.12 15	$(9/2^{-}, 11/2^{-})$	В	J^{π} : Log ft=5.00 from (11/2 ⁻), γ to 9/2 ⁺ .
2818.80 9	(9/2,11/2,13/2)	В	J^{π} : Log <i>ft</i> =5.67 from (11/2 ⁻).
2863.31 20	$(9/2, 11/2, 13/2^+)$	В	J^{π} : Log <i>ft</i> =5.61 from (11/2 ⁻), γ to 9/2 ⁺ .

 † From a least-squares fit to the adopted Ey's.

$\gamma(^{125}\text{In})$

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}	E_f	J_f^{π}	Mult. [#]	α [@]	Comments
796.44	$(3/2^{-})$	436.29 [‡] 3	100	360.12	$1/2^{(-)}$			
1027.40	$(11/2^+)$	1027.53 8	100	0.0	9/2+			
1099.48	$(5/2^+)$	302.96 [‡] 15	7.4 6	796.44	$(3/2^{-})$			
		1099.48 [‡] <i>3</i>	100 8	0.0	9/2+			
1173.064	$(13/2^+)$	146.38 <i>20</i> 1173.16 <i>3</i>	8.7 <i>15</i> 100 <i>6</i>	1027.40 0.0	(11/2 ⁺) 9/2 ⁺			
1219.80	$(1/2, 3/2, 5/2^{-})$	422.91 [‡] 10	47 6	796.44	$(3/2^{-})$			
		859.71 [‡] 5	100.0 9	360.12	$1/2^{(-)}$			
1563.88	(9/2,11/2,13/2 ⁺)	536.48 8 1563.86 8	84 <i>9</i> 100 <i>10</i>	1027.40 0.0	(11/2 ⁺) 9/2 ⁺			
1577.60		1577.66 5	100	0.0	9/2+			
1588.57		369.23 [‡] 15	26 5	1219.80	$(1/2, 3/2, 5/2^{-})$			
		792.43 [‡] 20	100 40	796.44	(3/2 ⁻)			
1810.38		1013.97 [‡] <i>10</i>	100	796.44	(3/2 ⁻)			
1909.70	$(13/2^+)$	736.65 3	100 6	1173.064	$(13/2^+)$			
1052 1	$(15/2^{+})$	1909.94 15	5.3 8	0.0	$9/2^+$	M1	5 67	$\alpha(\mathbf{K}) = 4.00.7$, $\alpha(\mathbf{I}) = 0.628.0$, $\alpha(\mathbf{M}) = 0.1220.17$.
1955.1	(13/2)	45.4		1909.70	(15/2)	IVII	5.07	$\alpha(\mathbf{N})=4.90^{-7}; \alpha(\mathbf{L})=0.028^{-9}; \alpha(\mathbf{M})=0.1220^{-17}; \alpha(\mathbf{N}+)=0.0239^{-4}; \alpha(\mathbf{N})=0.0223^{-4}; \alpha(\mathbf{O})=0.001636^{-23}$
1958.08		1958.29 8	100	0.0	9/2+			
1970.90		1971.09 10	100	0.0	9/2+			
2009.4	(19/2+)	56.3		1953.1	(15/2+)	E2	11.99	B(E2)(W.u.)=0.221 25 α (K)=6.67 10; α (L)=4.30 6; α (M)=0.876 13; α (N+)=0.1511 22 α (N)=0.1474 21; α (O)=0.00366 6
2064.60	(9/2,11/2,13/2)	2064.64 5	100	0.0	9/2+			
2101.40	(9/2,11/2,13/2)	191.88 <i>15</i> 928.40 <i>10</i> 2101.06 <i>15</i>	100 <i>14</i> 56 9 23 6	1909.70 1173.064 0.0	(13/2 ⁺) (13/2 ⁺) 9/2 ⁺			
2147.18	$(5/2^+)$	1349.9 [‡] 5	8.2 23	796.44	$(3/2^{-})$			
		2147.19 [‡] 10	100 6	0.0	9/2 ⁺			According to 1986Ho24 and 1989Hu03, 2147-keV γ -ray decays directly to the ground state, but 1987Sp09 suggest the γ -ray as decaying from 2507-keV level from Q_{β} measurement.
2161.2	(23/2 ⁻)	151.8		2009.4	(19/2 ⁺)	M2	1.152	B(M2)(W.u.)=0.0014 5 α (K)=0.959 14; α (L)=0.1560 22; α (M)=0.0311 5; α (N+)=0.00606 9 α (N)=0.00567 8; α (O)=0.000388 6
2217.83	(9/2,11/2,13/2)	153.78 20	6 <i>3</i>	2064.60	(9/2,11/2,13/2)			

ω

a (1251n)	(continued)
$\gamma(120 \text{In})$	(continued)

E _i (level)	J^{π}_i	E_{γ}^{\dagger}	I_{γ}	E_f	\mathbf{J}_{f}^{π}
2217.83	(9/2,11/2,13/2)	1044.72 4	100 8	1173.064	(13/2 ⁺)
2248.50	(9/2,11/2,13/2)	1075.44 25	81 14	1173.064	$(13/2^+)$
		1221.09 25	$1.0 \times 10^2 4$	1027.40	$(11/2^+)$
2252.65	$(9/2,11/2,13/2^+)$	281.55 15	68 9	1970.90	a vet
		2252.80 15	100 10	0.0	9/2+
2349.44	(1/2, 3/2, 5/2)	538.9+ 4	11 3	1810.38	
		1249.75 [‡] 25	76 14	1099.48	$(5/2^+)$
		1552.88 [‡] 15	100 14	796.44	$(3/2^{-})$
		1989.50 [‡] 15	66 10	360.12	$1/2^{(-)}$
2378.16	(9/2,11/2,13/2)	160.03 15	20 4	2217.83	(9/2,11/2,13/2)
		313.47 20	38 8	2064.60	(9/2,11/2,13/2)
		407.46 8	39 5	1970.90	
		1205.19 10	58 9	1173.064	$(13/2^+)$
		1351.08 10	100 11	1027.40	$(11/2^{+})$
2381.28	(1/2, 3/2, 5/2)	1584.83 5	100 8	796.44	$(3/2^{-})$
		2021.16 ⁴ 15	16 4	360.12	$1/2^{(-)}$
2392.594	$(9/2^{-},11/2^{-})$	1219.08 15	17 4	1173.064	$(13/2^+)$
		1364.64 20	10.7 19	1027.40	$(11/2^{+})$ $0/2^{+}$
2411 48	$(0/2 \ 11/2 \ 13/2)$	2392.43 3	100 8	0.0	$9/2^{+}$ (13/2 ⁺)
2411.40	(9/2, 11/2, 13/2) $(1/2^+ 2/2^+)$	1230. 4 1 0	24.2	1010.20	(13/2)
2497.45	(1/2 ,5/2)	1700.00	24 3	1010.30	(2/2-)
2572 76	$(0/2 \ 11/2 \ 12/2)$	1/00.96* 3	100 /	/96.44	(3/2)
2572.70	(9/2,11/2,15/2)	1399.09 5	100	1010.20	(15/2)
2585.08	$(1/2^+, 3/2^+, 5/2^+)$	//4.46* 20	25.0	1810.38	
		996.784 10	100 15	1588.57	
		1364.64 20	58 4	1219.80	$(1/2, 3/2, 5/2^{-})$
		1788.38 [‡] 20	20 5	796.44	$(3/2^{-})$
2616.37	$(9/2^{-},11/2^{-})$	238.97 15	12 3	2378.16	(9/2,11/2,13/2)
		1589.11 5	55 5	1027.40	$(11/2^+)$ $0/2^+$
2631 58	$(0/2 \ 11/2 \ 13/2)$	2010.20 3	100 8	0.0	$9/2^{+}$ (13/2 ⁺)
2640 29	$(9/2^{-},11/2^{-},13/2)$ $(9/2^{-},11/2^{-},13/2^{-})$	247 53 3	87.9	2392 594	$(13/2^{-})$ $(9/2^{-} 11/2^{-})$
2010.29	()/2 ,11/2 ,15/2)	262.15 3	61 7	2378.16	(9/2, 11/2, 13/2)
		730.73 8	54 6	1909.70	$(13/2^+)$
		1467.35 <i>3</i>	100 7	1173.064	$(13/2^+)$
2641.26	(1/2,3/2,5/2)	1421.67 15	75 20	1219.80	$(1/2, 3/2, 5/2^{-})$
		1844.43 20	100 20	796.44	(3/2-)
2641.67	$(9/2^{-},11/2^{-})$	577.36 15	4.5 7	2064.60	(9/2,11/2,13/2)

4

$\gamma(^{125}\text{In})$ (continued)

E _i (level)	\mathbf{J}_i^π	E_{γ}^{\dagger}	Iγ	E_f	\mathbf{J}_f^{π}
2641.67	(9/2 ⁻ ,11/2 ⁻)	683.64 4	17.1 14	1958.08	
		1064.26 8	18.1 20	15/7.60	
		1613.74 8	100.0 11	1027.40	$(11/2^+)$
		2641.8 <i>3</i>	55 6	0.0	9/2+
2802.12	$(9/2^{-}, 11/2^{-})$	549.3 <i>3</i>	5.9 25	2252.65	(9/2,11/2,13/2 ⁺)
		1774.90 20	8.7 16	1027.40	$(11/2^+)$
		2801.8 <i>3</i>	100 10	0.0	9/2+
2818.80	(9/2,11/2,13/2)	909.10 8	100	1909.70	$(13/2^+)$
2863.31	$(9/2, 11/2, 13/2^+)$	1835.88 25	27 5	1027.40	$(11/2^+)$
		2863.3 <i>3</i>	100 15	0.0	9/2+

[†] From ¹²⁵Cd β^- decay (0.48 s), unless otherwise noted. [‡] From ¹²⁵Cd β^- decay (0.65 s). [#] From ¹²⁵In IT Decay.

[@] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

From ENSDF

Adopted Levels, Gammas

Level Scheme

Intensities: Relative photon branching from each level

¹²⁵₄₉In₇₆

Adopted Levels, Gammas

Level Scheme (continued)

Intensities: Relative photon branching from each level

¹²⁵₄₉In₇₆

7

Adopted Levels, Gammas

Level Scheme (continued)

Intensities: Relative photon branching from each level

¹²⁵₄₉In₇₆