## <sup>125</sup>Ba ε decay (3.3 min) 1975Ar31

| History         |             |                     |                        |  |  |  |  |
|-----------------|-------------|---------------------|------------------------|--|--|--|--|
| Туре            | Author      | Citation            | Literature Cutoff Date |  |  |  |  |
| Full Evaluation | J. Katakura | NDS 112, 495 (2011) | 1-Jan-2010             |  |  |  |  |

Parent: <sup>125</sup>Ba: E=0.0;  $J^{\pi}=1/2^{(+)}$ ;  $T_{1/2}=3.3 \text{ min } 3$ ;  $Q(\varepsilon)=4420 \ 14$ ;  $\%\varepsilon+\%\beta^+$  decay=100.0 1996Os04: On-line ms, HPGe,  $\beta^+$ ,  $\gamma$ ,  $\gamma\gamma$  coin,  $\beta^+\gamma$  coin, end point energy. 1975Ar31: <sup>117</sup>Sn(<sup>12</sup>C,4n) E=75 MeV, semi  $\gamma$ , scin  $\beta$ ,  $\beta\gamma$ -coin. 1987Fr10: Ce(<sup>3</sup>He,X) E=270 MeV, on-line ms, scin. Magnetic spectrometer, ce- $\gamma$  coin. 1978Bo32: <sup>96</sup>Ru+<sup>32</sup>S, <sup>98</sup>Ru+<sup>32</sup>S, E=190 MeV, on-line ms, semi  $\gamma$ , scin  $\beta^+$ ,  $(x-ray)\beta^+$  coin. 1968Da09: <sup>115</sup>In(<sup>14</sup>N,4n), <sup>115</sup>In(<sup>16</sup>O,6n)<sup>125</sup>La  $\varepsilon$  <sup>125</sup>Ba, semi  $\gamma$  scin  $\beta^+$ ,  $\gamma\gamma$ -coin. The decay scheme is that proposed by 1975Ar31.

<sup>125</sup>Cs Levels

| E(level) <sup>†</sup>                         | $J^{\pi \ddagger}$                                                               | T <sub>1/2</sub>                                          |                                                                                                                                       | Comments |
|-----------------------------------------------|----------------------------------------------------------------------------------|-----------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|----------|
| 0.0<br>77.6 5<br>85.6 5<br>140.7 4<br>185.7 5 | $ \frac{1/2^{(+)}}{3/2^{(+)}} \\ 5/2^{(+)} \\ (3/2^{-}) \\ 1/2^{(+)}, 3/2, 5/2 $ | 46.7 min <i>1</i><br>1.2 ns <i>1</i><br>14.5 ns <i>15</i> | T <sub>1/2</sub> : From 1954Mi16.<br>T <sub>1/2</sub> : From 1987Fr10.<br>T <sub>1/2</sub> : From ( $\beta^+$ )(85.4γ)(t) (1976Be11). |          |

 $^{\dagger}$  From a least-squares fit to Ey's.

<sup>±</sup> Spin and parity values are those given under Adopted Levels.

 $\varepsilon, \beta^+$  radiations

| E(decay)                                        | E(leve                   | l)                      |                                                                                                                      |                       |                                          |                              |        | Comments           |                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |
|-------------------------------------------------|--------------------------|-------------------------|----------------------------------------------------------------------------------------------------------------------|-----------------------|------------------------------------------|------------------------------|--------|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| 4.26 7<br>4.28 6                                | 140.7<br>77.6            | E(deca<br>E(deca        | E(decay): From E $\beta$ + endpoint energy of 3.24 MeV 7<br>E(decay): From E $\beta$ + endpoint energy of 3.26 MeV 6 |                       |                                          |                              |        |                    | (1996Os04).<br>(1996Os04).                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |
|                                                 |                          |                         |                                                                                                                      |                       |                                          | $\gamma$ ( <sup>125</sup> Cs | )      |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |
| Eγ                                              | $I_{\gamma}^{\ddagger}$  | E <sub>i</sub> (level)  | $\mathrm{J}_i^\pi$                                                                                                   | $E_f$                 | $\mathbf{J}_f^{\pi}$                     | Mult.                        | δ      | $\alpha^{\dagger}$ | Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |
| 45.0 <i>6</i><br>55.0 <i>6</i><br>63.1 <i>6</i> | ≈3<br>48 4<br>8 4        | 185.7<br>140.7<br>140.7 | $1/2^{(+)}, 3/2, 5/2$<br>$(3/2^{-})$<br>$(3/2^{-})$                                                                  | 140.7<br>85.6<br>77.6 | $(3/2^{-}) 5/2^{(+)} 3/2^{(+)}$          |                              |        |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |
| 77.6 6                                          | 100                      | 77.6                    | 3/2(+)                                                                                                               | 0.0                   | 1/2 <sup>(+)</sup>                       | M1+E2                        | 0.22 6 | 1.99 <i>10</i>     | $\begin{aligned} &\alpha(\mathbf{K}) = 1.64 \ 5; \ \alpha(\mathbf{L}) = 0.28 \ 4; \\ &\alpha(\mathbf{M}) = 0.058 \ 9; \ \alpha(\mathbf{N}+) = 0.0138 \ 19 \\ &\alpha(\mathbf{N}) = 0.0121 \ 17; \ \alpha(\mathbf{O}) = 0.00160 \ 20; \\ &\alpha(\mathbf{P}) = 6.30 \times 10^{-5} \ 17 \\ &\text{Mult.}_{,\delta}: \ \text{From} \\ &\text{Ice}(\mathbf{K})/\text{Ice}(\mathbf{L}+\mathbf{M}+\mathbf{N}+) = 4.7 \ 5 \\ &(1987 \text{Fr}10). \end{aligned}$ |  |  |  |
| 85.4 6                                          | 82 8                     | 85.6                    | 5/2 <sup>(+)</sup>                                                                                                   | 0.0                   | 1/2 <sup>(+)</sup>                       | E2                           |        | 3.28 10            | $\alpha(K)=1.94 5; \ \alpha(L)=1.05 4; \alpha(M)=0.229 9; \ \alpha(N+)=0.0517 19 \alpha(N)=0.0462 17; \ \alpha(O)=0.00537 19; \alpha(P)=5.24\times10^{-5} 13 Mult.: From Ice(K)/Ice(L+M+N+)= 1.6 3 (1987Fr10).$                                                                                                                                                                                                                                            |  |  |  |
| 100.1 <i>6</i><br>108.0 <i>6</i>                | 6 <i>3</i><br>8 <i>2</i> | 185.7<br>185.7          | $1/2^{(+)}, 3/2, 5/2$<br>$1/2^{(+)}, 3/2, 5/2$                                                                       | 85.6<br>77.6          | 5/2 <sup>(+)</sup><br>3/2 <sup>(+)</sup> |                              |        |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |

Continued on next page (footnotes at end of table)

|                                |                 |                        |                     |       | <sup>125</sup> Ba $\varepsilon$ decay (3.3 min) 19 |       | ( <b>3.3</b> min) 1 | 975Ar31 (continued)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|--------------------------------|-----------------|------------------------|---------------------|-------|----------------------------------------------------|-------|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\gamma(^{125}Cs)$ (continued) |                 |                        |                     |       |                                                    |       |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| $E_{\gamma}$                   | Iγ <sup>‡</sup> | E <sub>i</sub> (level) | $\mathbf{J}_i^\pi$  | $E_f$ | $\mathbf{J}_{f}^{\pi}$                             | Mult. | $\alpha^{\dagger}$  | Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 140.9 6                        | 86 8            | 140.7                  | (3/2 <sup>-</sup> ) | 0.0   | 1/2 <sup>(+)</sup>                                 | E1    | 0.0845 16           | $\begin{aligned} &\alpha(\text{K})=0.0726 \ 14; \ \alpha(\text{L})=0.00951 \ 18; \ \alpha(\text{M})=0.00193 \ 4; \\ &\alpha(\text{N}+)=0.000460 \ 9 \\ &\alpha(\text{N})=0.000404 \ 8; \ \alpha(\text{O})=5.44\times10^{-5} \ 10; \ \alpha(\text{P})=2.36\times10^{-6} \\ &5 \\ &\text{Mult.: From Ice(85.4\text{K})/Ice(140.9\text{K})=17 \ 4 \ (1987\text{Fr}10). \\ &\alpha(84.5\text{K}) \ \alpha(84.5\text{K})=0.11+6-4 \ \text{deduced from the ratio} \\ &\text{rules out all mults excepting E1.} \end{aligned}$ |

<sup>†</sup> Additional information 1.
<sup>‡</sup> From 1975Ar31, relative to I(77.6)=100.

## <sup>125</sup>Ba ε decay (3.3 min) 1975Ar31

## Decay Scheme



<sup>125</sup><sub>55</sub>Cs<sub>70</sub>

3