125 La ε decay 2002Sh01,1989IiZZ

Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	J. Katakura	NDS 112, 495 (2011)	1-Jan-2010

Parent: ¹²⁵La: E=0.0; $J^{\pi}=(3/2^+)$; $T_{1/2}=64.8$ s *12*; $Q(\varepsilon)=5909\ 28$; $\%\varepsilon+\%\beta^+$ decay=100.0

¹²⁵La-Q(ε) value from 1998Ko66.

2002Sh01: ^{nat}Mo(³²S.pxn), on-line mass, measured E γ , I γ , $\beta\gamma$, x- γ coin, $\gamma\gamma$ coin, ce, α , level lifetimes.

1998Ko66: 92 Mo(36 Ar,3pxn), on-line mass, measured Q, $\beta^+\gamma$ coin.

1992Ic02: On-line mass, semi γ , measured T_{1/2}.

1989IiZZ: Mo(³²S,pxn) E=160 MeV, on-line mass, measured E γ , $\gamma\gamma$ -coin, $\beta\gamma$ (t).

1978Bo32: 96 Ru+ 32 S, 98 Ru+ 32 S, E=190 MeV, on-line mass, semi γ , scin β^+ . 1987GeZY: 94 Mo+ 35 Cl, 96 Mo+ 35 Cl, on-line mass.

The decay scheme is that proposed by 1989IiZZ on the basis of energy sums and $\gamma\gamma$ coin. The decay scheme is incomplete.

1998Ko66 measured Q value as 5.95 MeV 7 from $\beta^+\gamma$ coin.

¹²⁵Ba Levels

$\begin{array}{ccccccc} 0.0 & 1/2^{(+)} & 3.5 \min 4 & \% \varepsilon + \% \beta^+ = 100. \\ 0.0 + x & (5/2^+) & & & & & & & & \\ \end{array}$	
E(level): $x \approx 20$ keV from systematics (1987GeZY).	
43.6 5 $3/2^{(+)}$ 0.7 ns 2 $T_{1/2}$: From centroid shift (2002Sh01). 67.6+x 5 $(7/2^-)$ 2.76 μ s 14 $T_{1/2}$: From decay curve of 68-keV γ (2002Sh01). 166.3+x 9 $(9/2^-)$ 168.5+x 9 $(7/2^+)$ 237.2 7 $(5/2^+)$ 300.4+x 10 $(11/2^-)$ 325.7 8 $(7/2^+)$ 384.9+x 9 $(9/2^+)$ 651.3 11 687.9+x 14 702.3+x 12 735.4+x 14 753.5+x 12 763.2 11 841.8+x 10 910.4+x 14 1284.0 9	

[†] From Adopted Levels.

[‡] From a least squares fit by evaluator to $E\gamma$'s assuming 1 keV uncertainty for γ 's with no uncertainty reported.

ε, β^+ radiations

E(decay)	E(level)	Comments
4.63 10	1310.9	E(decay): From E β + endpoint energy of 3.61 MeV 10 (1998Ko66).
4.67 9	1284.0	E(decay): From E β + endpoint energy of 3.65 MeV 9 (1998Ko66).

 $^{125}_{56}\text{Ba}_{69}$ -2

				125 La ε	decay	2002Sh01,	1989IiZ	Z (continued)	
						γ (¹²⁵ Ba)		
E_{γ}^{\dagger}	Iγ ^{&}	E _i (level)	\mathbf{J}_i^π	\mathbf{E}_{f}	J_f^π	Mult. ^a	δ	$\alpha^{\boldsymbol{b}}$	Comments
43.6 [‡] 5	26.4	43.6	3/2 ⁽⁺⁾	0.0	1/2 ⁽⁺⁾	M1(+E2)	<1.4	21 11	$\alpha(K)\exp=8.9 5$ $\alpha(K)=8.8 6; \alpha(L)=10 9; \alpha(M)=2.2$ $I9; \alpha(N+)=0.5 5$ $\alpha(N)=0.4 4; \alpha(O)=0.06 5; \alpha(P)=0.00055 7$ $\delta: \text{ From } \alpha(K)\exp \text{ by evaluators. RUL}$ suggests $\delta < 0.20.$
67.6 [‡] 5	208.8	67.6+x	(7/2 ⁻)	0.0+x	(5/2+)	E1		0.668 17	α (K)exp=0.9 3 α (K)=0.567 14; α (L)=0.0808 21; α (M)=0.0166 5; α (N+)=0.00403 11 α (N)=0.00350 9; α (O)=0.000504 13; α (P)=2.79×10 ⁻⁵ 7
88.4 98.7	9.1 78.5	325.7 166.3+x	(7/2 ⁺) (9/2 ⁻)	237.2 67.6+x	(5/2 ⁺) (7/2 ⁻)	M1,E2		1.5 5	$\alpha(K) \exp = 1.0 \ 4$ $\alpha(K) = 1.07 \ 20; \ \alpha(L) = 0.36 \ 24;$ $\alpha(M) = 0.08 \ 6; \ \alpha(N+) = 0.018 \ 13$ $\alpha(N) = 0.016 \ 11; \ \alpha(O) = 0.0022 \ 14;$ $\alpha(P) = 5.79 \times 10^{-5} \ 9$
111.9 [#] 134.0	25.2	763.2 300.4+x	(11/2 ⁻)	651.3 166.3+x	(9/2 ⁻)	M1,E2		0.56 <i>13</i>	α (K)exp=0.36 <i>14</i> α (K)=0.43 <i>6</i> ; α (L)=0.10 <i>6</i> ; α (M)=0.022 <i>12</i> ; α (N+)=0.005 <i>3</i> α (N)=0.0047 <i>25</i> ; α (O)=0.0006 <i>4</i> ; α (P)=2.41×10 ⁻⁵ 5
168.5	61.0	168.5+x	(7/2 ⁺)	0.0+x	(5/2+)	(M1)		0.228	$\begin{aligned} &\alpha(K) = 2.4 \times 10^{-5} \\ &\alpha(K) = 0.196 \ 3; \ \alpha(L) = 0.0260 \ 4; \\ &\alpha(M) = 0.00537 \ 8; \ \alpha(N+) = 0.001348 \\ I9 \\ &\alpha(N) = 0.001158 \ 17; \ \alpha(O) = 0.0001772 \\ &25; \ \alpha(P) = 1.287 \times 10^{-5} \ 18 \\ &\text{Mult.: } M1 + E2 \ from \ \alpha(K) exp, \ but \\ &\gamma(\theta) \ in \ ^{116} \text{Sn}(^{12}\text{C}, 2 \\ &\gamma(\theta) = 0.00168 \ 10^{-2}\text{S}; \ 4 \times 10^{-5} \ 1$
193.5	37.3	237.2	(5/2+)	43.6	3/2 ⁽⁺⁾	M1,E2		0.174 <i>19</i>	$\alpha(K) = 0.124$ $\alpha(K) = 0.1418; \alpha(L) = 0.0269;$ $\alpha(M) = 0.005619; \alpha(N+) = 0.00145$ $\alpha(N) = 0.00124; \alpha(O) = 0.000175;$ $\alpha(P) = 8.3 \times 10^{-6}5$
216.3	15.3	384.9+x	(9/2+)	168.5+x	(7/2+)	M1,E2		0.124 9	$\alpha(K)=0.134$ $\alpha(K)=0.1013; \alpha(L)=0.0185;$ $\alpha(M)=0.003711; \alpha(N+)=0.00092$ 24 $\alpha(N)=0.0008022; \alpha(O)=0.000123;$
232.8 237.3 *254.6 [@]	5.9 41.6	300.4+x 237.2	(11/2 ⁻) (5/2 ⁺)	67.6+x 0.0	(7/2 ⁻) 1/2 ⁽⁺⁾	(E2)		0.0969	$\alpha(P)=6.0\times10^{-6} 5$ $\alpha(K)\exp=0.056 17$ $\alpha(K)=0.0770 11; \ \alpha(L)=0.01579 23;$ $\alpha(M)=0.00336 5; \ \alpha(N+)=0.000812$ 12 $\alpha(N)=0.000708 10; \ \alpha(O)=0.0001000$ $14; \ \alpha(P)=4.21\times10^{-6} 6$
x272.5 [@]									

				¹²⁵ La	ε decay	2002Sh)1,1989Ii7	ZZ (continued)
γ ⁽¹²⁵ Ba) (continued)								
E_{γ}^{\dagger}	Ιγ &	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}	Mult. ^a	α b	Comments
281.9	100.0	325.7	(7/2+)	43.6	3/2 ⁽⁺⁾	(E2)	0.0552	$\alpha(K) \exp = 0.046 \ 14$ $\alpha(K) = 0.0446 \ 7; \ \alpha(L) = 0.00835 \ 12; \ \alpha(M) = 0.001764$ $25; \ \alpha(N+) = 0.000429 \ 6$ $\alpha(N) = 0.000373 \ 6; \ \alpha(O) = 5.34 \times 10^{-5} \ 8;$ $\alpha(P) = 251 \times 10^{-6} \ 4$
384.9	6.3	384.9+x	$(9/2^+)$	0.0+x	$(5/2^+)$			u(1)-2.51×10 +
414.0 [#]		651.3		237.2	$(5/2^+)$			
521.6 [#]		687.9+x		166.3+x	(9/2 ⁻)			
526.0 [#]		763.2		237.2	$(5/2^+)$			
569.1 [#]		735.4+x		166.3+x	(9/2 ⁻)			
610.0 [#]		910.4+x		300.4+x	$(11/2^{-})$			
634.7 [#]		702.3+x		67.6+x	$(7/2^{-})$			
675.5 [#]		841.8+x		166.3+x	(9/2 ⁻)			
685.9 [#]		753.5+x		67.6+x	$(7/2^{-})$			
774.1 [#]		841.8+x		67.6+x	$(7/2^{-})$			
958.2 [#]		1284.0		325.7	$(7/2^+)$			
985.2 [#]		1310.9		325.7	$(7/2^+)$			

[†] From 2002Sh01, unless otherwise noted.

1284.0

43.6

 $3/2^{(+)}$

[‡] From 1978Bo32.

1240.6#

From 1989IiZZ. @ Given in spectrum figure of 2002Sh01.

[&] From 2002Sh01 relative to I(282)=100.

^a From measured $\alpha(K)\exp(2002Sh01)$ normalized to $\alpha(K)(E2$ theory) for the 230 keV 2⁺ to 0⁺ transition in ¹²⁴Ba, unless otherwise noted.

^b Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

 $x \gamma$ ray not placed in level scheme.

¹²⁵₅₆Ba₆₉