⁶⁴Ni(⁶⁴Ni,3nγ) 2005Mb05,2005Ma84

History							
Туре	Author	Citation	Literature Cutoff Date				
Full Evaluation	J. Katakura	NDS 112, 495 (2011)	1-Jan-2010				

2005Mb05,2005Ma84: E-255, 261 MeV. Measured E γ , I γ , $\gamma\gamma$, $\gamma\gamma(\theta)$, $\gamma\gamma(\ln \text{ pol})$. All data are from 2005Mb05. The two papers are by the same group. XUNDL data set compiled by B. Singh (McMaster), December 20, 2005, is consulted. Octupole correlations deduced through the observation of interband E1 transitions.

¹²⁵Ba Levels

E(level)	J^{π}	E(level)	J^{π}	E(level)	J^{π}	E(level)	J^{π}
0+x [†] &	$(5/2^+)$	639+x [‡]	$(11/2^+)$	1901+x [#]	$(21/2^{-})$	2943+x [†]	$(25/2^+)$
68+x [@]	$(7/2^{-})$	751+x [@]	(15/2-)	1970+x [‡]	$(19/2^+)$	3223+x [‡]	$(27/2^+)$
166+x [#]	(9/2 ⁻)	931+x [†]	$(13/2^+)$	2086+x [@]	$(23/2^{-})$	3555+x [†]	$(29/2^+)$
169+x [‡]	$(7/2^+)$	1163+x [#]	$(17/2^{-})$	2350+x [†]	$(21/2^+)$	3693+x [#]	$(29/2^{-})$
300+x [@]	$(11/2^{-})$	1253+x [‡]	$(15/2^+)$	2679+x [‡]	$(23/2^+)$	3770+x [@]	$(31/2^{-})$
385+x [†]	$(9/2^+)$	1355+x [@]	(19/2 ⁻)	2748+x [#]	$(25/2^{-})$	3874+x [‡]	$(31/2^+)$
573+x [#]	$(13/2^{-})$	1603+x [†]	$(17/2^+)$	2912+x [@]	$(27/2^{-})$		

[†] Band(A): $5/2^+$ band, $\alpha = +1/2$.

[‡] Band(a): $7/2^+$ band, $\alpha = -1/2$.

[#] Band(B): $9/2^+$ band, $\alpha = +1/2$.

^(a) Band(b): $7/2^{-}$ band, $\alpha = -1/2$.

& $x \approx 20$ keV from systematics.

$\gamma(^{125}\text{Ba})$

E_{γ}	E _i (level)	\mathbf{J}_i^{π}	$E_f \qquad J_f^{\pi}$	Eγ	E _i (level)	\mathbf{J}_i^{π}	$E_f \qquad J_f^{\pi}$	Mult. [†]
68	68+x	$(7/2^{-})$	0+x (5/2 ⁺)	406	573+x	$(13/2^{-})$	$166+x (9/2^{-})$	
99	166+x	$(9/2^{-})$	68+x (7/2 ⁻)	412	1163+x	$(17/2^{-})$	751+x (15/2 ⁻)	
134	300+x	$(11/2^{-})$	$166+x (9/2^{-})$	451	751+x	$(15/2^{-})$	$300+x (11/2^{-})$	
163	2912+x	$(27/2^{-})$	2748+x (25/2 ⁻)	471	639+x	$(11/2^+)$	$169+x (7/2^+)$	
169	169+x	$(7/2^+)$	$0+x (5/2^+)$	475 [#]	3223+x	$(27/2^+)$	2748+x (25/2 ⁻)	
178	751+x	$(15/2^{-})$	$573+x (13/2^{-})$	544	3223+x	$(27/2^+)$	$2679 + x (23/2^+)$	
184	2086+x	$(23/2^{-})$	$1901 + x (21/2^{-})$	546	931+x	$(13/2^+)$	$385 + x (9/2^+)$	
192	1355+x	$(19/2^{-})$	$1163 + x (17/2^{-})$	546	1901+x	$(21/2^{-})$	1355+x (19/2 ⁻)	
216	385+x	$(9/2^+)$	$169+x (7/2^+)$	590	1163+x	$(17/2^{-})$	573+x (13/2 ⁻)	
233	300+x	$(11/2^{-})$	$68+x (7/2^{-})$	593	2943+x	$(25/2^+)$	$2350+x (21/2^+)$	
254	639+x	$(11/2^+)$	$385+x (9/2^+)$	604	1355+x	$(19/2^{-})$	751+x (15/2 ⁻)	
264	2943+x	$(25/2^+)$	$2679 + x (23/2^+)$	612	3555+x	$(29/2^+)$	$2943 + x (25/2^+)$	
272	573+x	$(13/2^{-})$	$300+x (11/2^{-})$	614	1253+x	$(15/2^+)$	$639+x (11/2^+)$	
280	3223+x	$(27/2^+)$	2943+x (25/2 ⁺)	631	931+x	$(13/2^+)$	300+x (11/2 ⁻)	(E1)
292	931+x	$(13/2^+)$	$639+x (11/2^+)$	651	3874+x	$(31/2^+)$	$3223 + x (27/2^+)$	
319	3874+x	$(31/2^+)$	$3555+x (29/2^+)$	662	2748+x	$(25/2^{-})$	2086+x (23/2 ⁻)	
322	1253+x	$(15/2^+)$	$931+x (13/2^+)$	672	1603+x	$(17/2^+)$	931+x (13/2 ⁺)	
328	2679+x	$(23/2^+)$	$2350+x (21/2^+)$	680	1253+x	$(15/2^+)$	573+x (13/2 ⁻)	(E1)
332	3555+x	$(29/2^+)$	3223+x (27/2 ⁺)	708	2679+x	$(23/2^+)$	1970+x (19/2 ⁺)	
350	1603+x	$(17/2^+)$	$1253+x (15/2^+)$	717	1970+x	$(19/2^+)$	$1253 + x (15/2^+)$	
367	1970+x	$(19/2^+)$	$1603 + x (17/2^+)$	731	2086+x	$(23/2^{-})$	1355+x (19/2 ⁻)	
380	2350+x	$(21/2^+)$	1970+x (19/2 ⁺)	738	1901+x	$(21/2^{-})$	1163+x (17/2 ⁻)	
385	385+x	$(9/2^+)$	$0+x (5/2^+)$	747	2350+x	$(21/2^+)$	$1603 + x (17/2^+)$	

Continued on next page (footnotes at end of table)

64 Ni(64 Ni,3n γ) 2005Mb05,2005Ma84 (continued)

$\gamma(^{125}Ba)$ (continued)

E_{γ}	E_i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	${ m J}_f^\pi$	Mult. [†]	E_{γ}	E _i (level)	\mathbf{J}_i^{π}	E_f	${ m J}_f^\pi$	Mult. [†]
777 807 826 846 852	2679+x 1970+x 2912+x 2748+x 1603+x	(23/2 ⁺) (19/2 ⁺) (27/2 ⁻) (25/2 ⁻) (17/2 ⁺)	1901+x 1163+x 2086+x 1901+x 751+x	(21/2 ⁻) (17/2 ⁻) (23/2 ⁻) (21/2 ⁻) (15/2 ⁻)	E1 [‡] (E1) (E1)	857 858 946 996	2943+x 3770+x 3693+x 2350+x	(25/2 ⁺) (31/2 ⁻) (29/2 ⁻) (21/2 ⁺)	2086+x 2912+x 2748+x 1355+x	(23/2 ⁻) (27/2 ⁻) (25/2 ⁻) (19/2 ⁻)	(E1)

[†] From $\gamma\gamma(\theta)$ and $\gamma\gamma(\text{lin pol})$, but the asymmetric values and the coefficients of angular correlation are not given excepting 777

 $^{+}\Delta J=1,E1$ from asymmetry parameter and polarization coefficient=+0.03 *3*; A₂=-0.27 *2*, A₄=+0.00 *3* from angular distribution. [#] Placement of transition in the level scheme is uncertain.

¹²⁵₅₆Ba₆₉

⁶⁴Ni(⁶⁴Ni,3nγ) 2005Mb05,2005Ma84

Level Scheme (continued)

¹²⁵₅₆Ba₆₉

4

¹²⁵₅₆Ba₆₉