Author

Type

Adopted Levels, Gammas

History

Citation

Literature Cutoff Date

		Full Evaluation	J. Katakura, Z. D. Wu	NDS 109,1655 (2	2008) 1-Apr-2008							
$Q(\beta^{-}) = -3159.6$ Note: Current ev	19; S(aluatio	n)=9424.48 9; $S(p)$ = on has used the follo	8589.5 <i>16</i> ; $Q(\alpha) = -1851$. wing Q record -3159.6	6 <i>17</i> 2012Wa38 199423.97 <i>178589</i> .	4 <i>15</i> –1844.4 <i>24</i> 2003Au03.							
			12-	⁴ Te Levels								
Cross Reference (XREF) Flags												
		A ¹²⁴ Sb β	- decay (60.20 d) G	124 Te(n,n' γ)	$M = \frac{125}{125} Te(p,d)$							
		B 124 Sb β	- decay (93 s) H	124 Te $(\gamma,\gamma),(\gamma,\gamma')$	$N = \frac{126}{126} Te(p,t)$							
		C ¹²⁴ I ε d	ecay I	123 Sb(³ He,d)	$0 = \frac{124}{124} \text{Te}(d,d')$							
		D 122 Sn(α	$(2n\gamma)$ J	123 Te(d,p)	P 124 Te (α, α')							
		E 123 Te(n,	(γ) E=thermal K	124 Te(p,p')	Q Coulomb excitation							
		F 123 Te(n,	(γ) E=res: av L	125 Te(d,t)	$\mathbf{R} \qquad ^{127}\mathrm{I}(\mu,\mathrm{xn}\gamma)$							
E(level) [†]	J^{π}	T _{1/2} ‡	XREF		Comments							
0.0 602.7271 <i>21</i>		stable 6.2 ps 1	ABCDEFGHI JKLMNOPQR ABCDEFGHI JKLMNOPQR	$^{1/2}=4.7178$ fm 17 (2004An14, evaluation). $\mu=+0.74$ 6; Q=-0.45 5 J ^{π} : E2 γ to 0 ⁺ .								
	 T_{1/2}: from Coul. ex. Other: 4.5 ps 5 ((γ,γ)) B(E2)=0.567 5. 2001Ra27 evaluation gives 6.23 ps 7. μ: from transient field integral perturbed angular correlation (2007St24); other: +0.56 6, +0.62 8 from ion implantation perturbed correlations, +0.66 6, +0.52 6 from transient field integral perturbed angular correlations (1988Du10,1985ThZx,1989Ra17,1981Sh15). See also 2005St24 compliation. 											
				-0.46 <i>10</i> (197 (1975Kl07) (1	4Ba45),-0.49 8(1974La05) and -0.41 8 1989Ra17). See also 2005St24 compilation.							
1248.5811 25	4+	1.4 ps +14–5	ABCDE G IJKLMNOP R	J^{π} : L=0+2 in (³ He,d) from 7/2 ⁺ ; $\gamma\gamma(\theta)$ in ¹²⁴ Sb β^{-} decay (60.20 d) and (n, γ).								
1325.5131 24	2+	1.04 ps +21-14	A CDEFG IJKLMNO QR	B(E2) \uparrow =0.019 5 J ^π : L=2 in (p,t): decay (60.20	; Coulomb excitation; $\gamma\gamma(\theta)$ in ¹²⁴ Sb β^- d) and (n,γ) .							
1657 283 22	0^{+}	$0.55 \text{ ps} \pm 14-7$	A CDEEC IKI MNO	$I_{1/2}$. Other. 0.4 I^{π} : I = 0 in (d n)	from $1/2^+$: $\gamma\gamma(\theta)$ in $(n\gamma)$ E-thermal							
1746.958 11	6 ⁺	0.00 po 117 7	B DEFG T K O R	J^{π} : log $ft=4.3$ fr	$rom 5^+$: $\gamma(\theta)$ in $(\alpha, 2n\gamma)$.							
1882.92 3	0^{+}	0.76 ps + 21 - 14	CDEFG IJKLMN	J^{π} : L=0 in (d,p)	from $1/2^+$; $\gamma\gamma(\theta)$ in (n,γ) E=thermal.							
1957.902 8	4+	I	A CDEFG IJKLMNO R	J^{π} : L=4 in (p,p' (n γ) E=therm); $\gamma\gamma(\theta)$ in ¹²⁴ Sb β^- decay (60.20 d) and							
2039.293 <i>3</i>	3+	0.55 ps +14-7	a cdEfG ijklmno r	XREF: m(2032) $I^{\pi}: \alpha(\theta)$ in (n n'	n(2037)o(2037).							
2039.421 3	2+	0.49 ps +14-7	a cdEfG ijklmno r	XREF: m(2032) $I^{\pi}: E2 \ \gamma \ to \ 0^+$	n(2037)o(2037).							
2091.603 17	2+	0.28 ps 7	A C EFG IJKLM R	J^{π} : L=2 in (³ He (60 20 d) and	e,d) from 7/2 ⁺ ; $\gamma\gamma(\theta)$ in ¹²⁴ Sb β^- decay (n γ) E=thermal							
2153.29 3	0^{+}		EFG J	J^{π} : L=0 in (d.p)	from $1/2^+$; $\gamma(\theta)$ in $(n,n'\gamma)$.							
2182.41 4	2+		A EFG IJ M	XREF: M(2205)).							
				J^{π} : L=2 in (³ He	e,d) from 7/2 ⁺ ; $\gamma(\theta)$ in $(n,n'\gamma)$ and $\gamma\gamma(\theta)$							
				and $\alpha(\exp)$ in	$(\mathbf{n},\boldsymbol{\gamma})$ and.							
2224.954 15	4+		A CDE G IJKLMNO	XREF: M(2217) J^{π} : $\gamma(\theta)$ in (n,n')). γ) and M1+E2 γ to 4 ⁺ .							

¹²⁴Te Levels (continued)

E(level) [†]	\mathbf{J}^{π}	$T_{1/2}^{\ddagger}$	Х	KREF	Comments
2273 97 15				LM	XREF M(2264)
2282.43 17				км	XREF: $M(2283)$.
2293.711.3	3-	0.17 ps 6	A CDE G	JKLMNOPO	$B(E3)\uparrow=0.09$ 3
	0	onry po o		5	XREF: J(2294)L(2294)M(2300)N(2292)O(2291)P(2300)O(2300
).
					J^{π} : L=3 in (α, α') , (p, p') and $\gamma \gamma(\theta)$ in ¹²⁴ Sb β^- decay (60.20 d).
					T _{1/2} : from Coul. ex.: others 100 ps 5 from β-γ(centroid shift) (1971BeWP).
					B(E3) from $T_{1/2}$. B(E3)=0.12 4 (2002Ki06, evaluation).
2308.42 9	0^{+}	<0.25 ns	C EF	IJKLM	XREF: I(2312)J(2309)K(2307)M(2311).
					J^{π} : E0 transitions to 0 ⁺ states.
					$T_{1/2}$: from centroid shift in (n,γ) E=thermal (1988Pe06).
2321.719 20	(6 ⁺)		D		J^{π} : $\gamma(\theta)$ in $(\alpha, 2n\gamma)$; (Q) γ to 4^+ .
2322.95 3	2+		A CDEFG	iJKL n	XREF: n(2329).
2226 6 5					J^{π} : $\gamma\gamma(\theta)$ in (n, γ) E=thermal; M1(+E2) γ to 2 ⁺ .
2326.6 5	<i>E</i> –			1J no	XREF: n(2329)o(2330).
2335.030 10	2		A CDE G	JKL NO	XREF: $n(2329)0(2330)$.
2240 465 17	6+		D DE	ערד	J [*] : From $\gamma(\theta)$ in $(\alpha, 2n\gamma)$ and E1 γ to 4 ⁺ .
2349.403 17	0 ⁺				J ^{**} : $\log l = 4.9 \mod 5^\circ$; $\gamma(\theta) \mod (\alpha, 2\pi\gamma)$.
2434.009 21	2		A CDEFG	LJKLN	I^{π} : I = 2 in (d n) from $1/2^+$: $\gamma(\theta)$ in (n n' γ)
2483 362 13	4+		A CDEEG	к	J^{π} : $\chi(\theta)$ in (n, n' χ) and M1+E2 χ 's to 4 ⁺
2491.8.3	•		ii colii d	1K	$5 \cdot 7(0) = (1,17) = 275 + 122$
2496.9 3				JK	
2511.96 5	4		A DE	IJKLmnO	XREF: m(2521)n(2520).
					J^{π} : $\gamma(\theta)$ in $(\alpha, 2n\gamma)$.
2521.33 <i>3</i>	2+		A C EFG	J Lmno	XREF: m(2521)n(2520)o(2525).
					J^{π} : $\gamma(\theta)$ in $(n,n'\gamma)$ and M1+E2 γ to 2 ⁺ .
2529.60 10	1+		EFG	iJL o	XREF: i(2540)o(2525).
					J^{π} : L=0 in (d,p) from $1/2^+$ and $\gamma(\theta)$ in (n,n' γ); 1989GoZK
					gave 2 or 3 to the spin from $\gamma(\theta)$ but the A ₂ and A ₄ values
2524.21 ((2+4+5+)				are consistent with $\Delta J=0$ or 1 to 2 ⁺ state.
2534.31 0	(3',4',5')			1 K	XREF: $1(2340)$.
2540.07.5	(4)		م م		J : L=(4) III (p,p).
2349.91 3	(+)		лIJ	IJK NO	$I^{\pi} \cdot \gamma(\theta)$ in $(\alpha 2n\gamma)$
2578 9 7				кім	XRFF: M(2571)
2589.61.9	(6)		D	m	XREF: $m(2593)$
			_		J^{π} : $\gamma(\theta)$ in $(\alpha, 2n\gamma)$.
2594.46 5	5		DE	m	XREF: m(2593).
					J^{π} : $\gamma(\theta)$ in $(\alpha, 2n\gamma)$.
2600.95 5	1+		EFG	JKLm	XREF: m(2593).
					J ^{π} : L=2 in (d,p) from 1/2 ⁺ ; $\gamma(\theta)$ in (n,n' γ).
2618.63 7	(3)		A DEFG	IK	J^{π} : $\gamma(\theta)$ in $(n,n'\gamma)$.
2629.14 14				K	
2641.15 7	2+		C EFG	Ij L	XREF: j(2644.4).
2615 20 10					J^{n} : E2 γ to 0 ⁺ and 4 ⁺ .
2047.20 10				jkm	AKEF: $j(2644.4)m(2653)$.
2033.88 23	6		л	J M	AKEF: $m(2033)$. VDEF: $i(2665)k(2664)m(2670)k(2670)$
2004.373 13	0		ע	јкцин	$I^{\pi} \cdot \gamma(A) \text{ in } (\alpha 2n\gamma)$
2664 43 3	8+		л	ikImn	XREF : $i(2665)k(2664)m(2670)p(2670)$
2007.73 3	0		U	المتعادر	$I^{\pi} \cdot \gamma(\theta)$ in $(\alpha 2n\gamma)$: E2 γ to 6^+
2673 771 13	7(-)		ЪС	1K mm	XREF m(2670)n(2670)
_5/5//1115			2 0	Six nut	J^{π} : $\gamma(\theta)$ in $(\alpha, 2n\gamma)$: systematics.
					· · · · · · · · · · · · · · · · · · ·

¹²⁴Te Levels (continued)

E(level) [†]	\mathbf{J}^{π}	T _{1/2} ‡	XREF	Comments
2681 46 4	2+		A C FEG TIKI	I^{π} : $\gamma(\theta)$ in $(n n' \gamma)$: M1+E2 γ to 2 ⁺
2602 670 5	2-		A CDE C TIVI OD	J^{π} : $\gamma(0)$ in (1,117), with E2 $\gamma(0) 2^{-1}$.
2095.079 5	3		A CDE G IJKL OP	π E1(+M2) + to 2 ⁺ log 6 8 115 from 2 ⁻ log 6 7 05 from
2701.01 3	Z		A CDE G JK M	J ^{**} : E1(+M2) γ to 2 [*] ; log π =8.115 from 3 [*] ; log π =7.05 from
0710 (4 4	4+			2; nuclear orientation.
2/10.64 4	4		A DE G J L	$J^{\pi}: \gamma(\theta)$ in $(\alpha, 2n\gamma); \gamma$ to 2 ⁺ .
2713.77 12	(5,7)		D	J^{n} : $\gamma(\theta)$ in $(\alpha, 2n\gamma)$.
2721.7 6	3+,4+		I mno	XREF: m(2727)n(2730)o(2727).
				J^{π} : L=0+2 in (³ He,d) from 7/2 ⁺ .
2730.6 5	$(0^+, 1^+)$		Jk mno	XREF: k(2734)m(2727)n(2730)o(2727).
				J^{π} : L=(0) in (d,p) from 1/2 ⁺ .
2733.9 <i>3</i>	2^{+} to 6^{+}		E k mno	XREF: k(2734)m(2727)n(2730)o(2727).
				J^{π} : γ to 4^+ .
2737.90.5	$6^{(+)}$		D J Lmn	XREF: m(2727)n(2730).
21011900	ů.		2 0 1	J^{π} : $\gamma(\theta)$ in $(\alpha, 2n\gamma)$: $\Omega \gamma$ to 4^+ .
2747 04 4	1(-)	27 fs 3	C FECH 1K m	VPEF m(2758)
2747.04 4	1	27 18 5	C EFGII JK III	I_{π}^{π} log $f_{\pi}=7.40$ from 2^{-1} $\alpha(0)$ in $(n n' \alpha)$; probable E1 α from
				J . $\log j_l = 7.49$ from 2 , $\gamma(0)$ in (ii,ii γ), probable E1 γ from
				The from (u,u')
2766 02 0	1+ 4- 4+		E KI w	$1_{1/2}$. Holli (γ, γ).
2700.93 9	1 10 4		E KLM	AREF: $m(2/38)$.
0000	<(±)		_	$J^{\prime\prime}$; γ s to 2 ⁺ and 3 ⁺ .
2773.89 3	6(1)		D	$J^{\pi}: \gamma(\theta) \text{ in } (\alpha, 2n\gamma); Q \gamma \text{ to } 4^{+}.$
27/4.968 25	3-,4-		A E G I KLM	J^{π} : log ft=7.491 from 3 ⁻ ; E1 γ to 4 ⁺ .
2783.217	1+,2+		E H JKLm	XREF: m(2/96).
				J ^{π} : L=2 in (d,p) from 1/2 ⁺ ; γ to g.s.; γ -excitation from 0 ⁺ .
				$T_{1/2}=0.23$ ps 7 if J=1, $T_{1/2}=0.21$ ps 7 if J=2 from (γ,γ').
2790.41 9	0^{+} to 4^{+}		E m	XREF: m(2796).
				J^{π} : γ 's to 2 ⁺ .
2808.66 8	2+		A EFG IJK m	XREF: m(2796).
				J^{π} : $\gamma(\theta)$ in $(n,n'\gamma)$; γ to g.s.
2814.53 8	2^{+} to 5^{+}		A E K	XREF: K(2816).
				J^{π} : γ 's to 3 ⁺ and 4 ⁺ .
2817.48 11	2+		EFG JKL	XREF: K(2820).
				J^{π} : $\gamma(\theta)$ in $(n,n'\gamma)$; γ to 0^+ .
2834.898 20	3-		CDEG KM	XREF: M(2834).
				J^{π} : $\gamma(\theta)$ in $(n,n'\gamma)$; E1 γ to 2 ⁺ .
2839.039 17	6		D L p	XREF: p(2840).
			-	J^{π} : $\gamma(\theta)$ in $(\alpha, 2n\gamma)$.
2841.7.3	$(0^{-}, 1^{-}, 2^{-})$		ЈК р	XREF: p(2840).
	(-,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			J^{π} : L=(1) in (d,p) from $1/2^+$.
2844.498 22	(5)		D	J^{π} : $\gamma(\theta)$ in $(\alpha, 2n\gamma)$.
2853.2 6	(-)		Jm	XREF: m(2850).
2858.90.15	2.3		EFG J L	J^{π} : $\gamma(\theta)$ in $(n, n'\gamma)$.
2865 262 18	3-		A DE K	I^{π} : γ 's to 3 ⁻ and 5 ⁻ : $\Omega \gamma$ to 5 ⁻ : $\gamma(\theta)$ in (α 2n γ) suggests 7 but
2003.202 10	5			$(a,2n)$ suggests 7, our conflicts γ transition to 3^{-}
2872 88 5	$3^{+} 4^{+} 5^{+}$		DTn	XREF: n(2870)
2072.00 5	5,7,5			I^{π}_{π} : $\alpha(0)$ in (α 2na): $I = 2 + 4$ in (³ Ha d) from $7/2^+$
2873 53 6	7		D	J : $\gamma(0) \text{ in } (\alpha, 2\pi\gamma), L=2\pm4 \text{ in } (-\pi\epsilon, \alpha) \text{ from } 7/2$. $I^{\pi}: \alpha(\theta) \text{ in } (\alpha, 2\pi\gamma)$
2013.33 0	$\epsilon'(+)$		U D	$J = y(0) \text{ in } (a, 2\pi a)$
2880.33 0	J ¹ 2+		U 112	J ^{(α)} : $\gamma(\alpha)$ in $(\alpha, 2n\gamma)$.
2884.2 10	1,2		H1	AKEF: $1(2884.9)$.
				J ^{γ} : γ -excitation from U ^{γ} .
2006.05.2	2-			$T_{1/2}=0.25 \text{ ps } 9 \text{ it } J=1, T_{1/2}=0.23 \text{ ps } 8 \text{ it } J=2 \text{ from } (\gamma, \gamma').$
2886.05 <i>3</i>	3=		A C E G iJK m	XREF: 1(2884.9)m(2894).
	1 a ±			J^{n} : $\gamma(\theta)$ in $(n,n'\gamma)$; E1+M2 γ to 2 ⁺ .
2897.3 10	1,2+		H m	XREF: m(2894).

¹²⁴Te Levels (continued)

E(level) [†]	J^{π}	T _{1/2} ‡	Х	REF	Comments
					J^{π} : γ -excitation from 0 ⁺ .
2002 71 3	(5)		-		$T_{1/2}=0.25$ ps 9 if J=1, $T_{1/2}=0.22$ ps 8 if J=2 from (γ,γ') .
2902.71.3	(5)		D	JKL	$J^{\pi}: \gamma(\theta) \text{ in } (\alpha, 2n\gamma).$
2911.180 14	(2, 4)		DE	V	$J^{\pi}: \gamma(\theta) \text{ in } (\alpha, 2n\gamma); Q \gamma \text{ to } S^{(\gamma)}.$
2920.09 4	(3,4) 6		DE	K m	$J : \gamma(0) III (u, 2II\gamma).$
2933.110	0		DEF	K m	$I^{\pi} \cdot \gamma(\theta)$ in $(\alpha 2n\gamma)$
2939.75 9				iK m	XREF: i(2942)m(2938).
2945.59 6	2+		Е	IjK	XREF: j(2942).
				5	J^{π} : γ' s to 0^+ and 4^+ .
2947.72 12	0^{+} to 3^{+}		EF	Ln	XREF: n(2950).
					J^{π} : γ to 2 ⁺ and γ from 0 ⁺ ,1 ⁺ capture state.
2954.249 16	6		D	_	J^{π} : $\gamma(\theta)$ in $(\alpha, 2n\gamma)$.
2957.55 7	3-,4+		E	Lmn	XREF: $m(2959)n(2950)$.
2062 1 7	0^{+} to 2^{+}		F	1V	$J^{*}: \gamma'$ s to 2 ⁺ and 5.
2905.17	0. 10.5.		E		AREF: III(2939)II(2930). I^{π} : α to 2^+ and α from 0^+ 1^+ conturn state
2065 18 3	(7^{-})		D		J. γ to Z and γ from 0, 1 capture state. I^{π} : $\gamma(\Omega)$ in $(\alpha/2n\alpha)$: (0) to $5^{(-)}$
2905.18 5	(7) (56)		ם ח	т	$J : \gamma(0) III (\alpha, 211\gamma), (Q) IO (3.7).$
2000.00 0	(3,0)		D	-	J^{π} : $\gamma(\theta)$ in $(\alpha 2n\gamma)$.
2973.256 24	(5.6)		D	k	XREF: k(2973.5).
	(-)-)				J^{π} : $\gamma(\theta)$ in $(\alpha, 2n\gamma)$.
2975.48 11	1	65 fs 9	EFGH	[]k n	XREF: k(2973.5)n(2980).
					J^{π} : $\gamma(\theta)$ in $(n,n'\gamma)$.
					$T_{1/2}$: in the case of J=2, 60 fs 8.
2982.71 9	2+,3+		E	n	XREF: n(2980).
2006 70 10	(5.6)				J^{n} : γ 's to 2^{+} and 4^{+} and γ from $0^{+}, 1^{+}$ capture state.
2986.70 19	(5,6)		D	Ln	XREF: $n(2980)$.
2088 24 5	1.2+		C FFC	אזאר	$J : \gamma(\theta) = (\alpha, 2\pi\gamma).$
2900.24 5	1,2		C LIG	JKLII	$I^{\pi} \log f_{t} = 8.08 \text{ from } 2^{-1} \text{ v to g s}$
3001.12.3	$2^{+}.3$		CDE	JKL N P	J^{π} : log ft=6.79 from 2 ⁻ ; γ 's to 2 ⁺ and 4 ⁺ .
3011.7 3)- 			L	, , , , , , , , , , , , , , , , , , ,
3018.11 27				L	
3030.7 <i>3</i>				K	
3032.839 16	7		D		J^{π} : $\gamma(\theta)$ in $(\alpha, 2n\gamma)$.
3036.3 8	(.)			JKL	
3038.29 3	8(+)		D		J^{π} : $\gamma(\theta)$ in $(\alpha, 2n\gamma)$; Q γ to 6 ⁺ .
3039.9 12	0^{+} to 3^{+}		E	m	XREF: m(3041).
2045 27 6	2+		FF	T	J^{*} : γ to 2° and γ from 0°, 1° capture state.
5045.57 0	2		Er	1 11	$I_{\pi} I_{\pi} I_{\pi} = 2 I_{\pi} $
3048 9 3	1 2+		F	In	$J = 2 + 4 \text{ in (11c,d) noin } 7/2 , y \le 0.0 \text{ and } 5 .$
5040.7 5	1,2		L	LII	$I^{\pi} \cdot \gamma'$ s to 0 ⁺ and 2 ⁺
3054.62 9	$3^{-}.4^{+}$		Е	Ln	XREF: L(3055)n(3050).
	- ,				J^{π} : $\gamma'g$ to 2^+ and 5^- .
3056.50 10	2+,3,4+		Е	JL	XREF: L(3060).
					J^{π} : γ 's to 2^+ and 4^+ .
3069.27 10	$6^{(+)}$		D	mn	XREF: m(3079)n(3070).
					J^{π} : $\gamma(\theta)$ in $(\alpha, 2n\gamma)$; (Q) γ to 4^+ .
3082.77 10	2^+ to 6^+		E	J Lmn	XREF: $m(3079)n(3070)$.
2000 57 7	2+		P C		J [*] : γ to 4 ⁺ .
3088.3/ /	2.		ĽÍ	T LT	AKEF: $1(3090)1(3091)J(3091)I(3091)$. I^{π} : 2^{4} s to 0^{+} and 4^{+}
3091 86 8	1.2^{+}		Ff H	611	XREF f(3090)i(3091)i(3090)l(3091)
5071.00 0	1,2		- LI 11	·	······································

¹²⁴Te Levels (continued)

E(level) [†]	\mathbf{J}^{π}	$T_{1/2}$ ‡	XR	REF	Comments
					J^{π} : γ' s to 0^+ and 2^+ .
3095.07 6	1^{-} to 4^{+}		Е	JL	J^{π} : $\gamma' s 2^+$ and 3^- .
3100.67 4	1.2+	1.04 ps 14	EF	 m	XREF: m(3106)
	-,-	F			I^{π} · γ to 0^+
3107.60.6	$2^+ 3 4^+$		F	m	XREF: m(3106)
5107.00 0	2,3,7		L	m	I^{π} : $a's$ to 2^+ and 4^+
2100 20 11	2+ 2 4-				J = y + 5 = 10 + 100
5109.58 11	21,3,4		E	m	X KEF: III(3100).
				_	$J^{\prime\prime}$: γ 's to 2 and 4 ⁺ .
3113.7 11			_	J	
3118.52 15	2+,3+		E	Ln	XREF: n(3120).
					J^{π} : γ 's to 2 ⁺ and 4 ⁺ and γ from 0 ⁺ ,1 ⁺ capture state.
3125.1 5			i	Jmn	XREF: i(3130)m(3133)n(3120).
3136.76 4	$8^{(+)}$		D		J^{π} : $\gamma(\theta)$ in $(\alpha, 2n\gamma)$; Q γ to 6 ⁺ .
3139.4 5			i	Jm	XREF: i(3130)m(3133).
3143.22.11	0^{+} to 3^{+}		E		I^{π} : γ 's to 2 ⁺ and γ from 0 ⁺ , 1 ⁺ capture state.
3149 5 7	0 10 2		-	л м	XREF M(3153)
315/37 3	10(+)		D	J	$\pi(2)$ $\pi(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)($
21(2.02.17	2^{+} 2 4 ⁺		D F		$J : \gamma(0) = (\alpha, 2\pi), Q \gamma(0, 0, 0)$
3102.92 17	$2^{+},3,4^{+}$		E	- w	J^{*} : γ s to 2 ⁺ and 4 ⁺ .
3167.94 8	2',3,4'		E	JM	XREF: $M(3169)$.
					J'' : γ 's to 2 ⁺ and 4 ⁺ .
3181.4 7			i	Jln	XREF: i(3200)l(3200)n(3190).
3206.6 6			i	Jln	XREF: i(3200)l(3200)n(3190).
3210.9 4	2^{+} to 6^{+}		E	lm	XREF: l(3200)m(3212).
					J^{π} : γ to 4^+ .
3212.23 7	$1^{-},2^{+}$		E	mn	XREF: m(3212)n(3220).
					J^{π} : γ 's to 0 ⁺ and 3 ⁻ .
3217.60 11	2+		Е	mn	XREF: m(3212)n(3220).
					J^{π} : γ' s to 0^+ and 4^+ .
3220.50.8	2^{+}	0.12 ps 3	E GH	mn	XREF: m(32.12)n(32.20).
	-	0.1 2 po c			I^{π} : γ 's to 0 ⁺ and 4 ⁺
					$T_{1/2}$: from $(\gamma \gamma')$
3731 2 7				1	$1_{1/2}$. Hom (γ, γ) .
2225 4 2	0^{+} to 4^{+}		F	5	π , α to 2^{\pm}
2222.4 2	1 2+		E E Už		J [*] . ⁷ 10 2 . XDEE. (2040)
3238.24 0	1,2		E HI	J	πKer : $1(5240)$.
2240.00.21	0+ 0 4+				J^{*} : γ 's to U^{*} and Z^{*} .
3240.88 21	2',3,4'		E 1		XREF: $1(3240)$.
					J^{n} : γ 's to 2^{+} and 4^{+} .
3257.98 10	2+,3,4+		EI	JN	J^{π} : γ 's to 2 ⁺ and 4 ⁺ .
3260.84 6	(6)		D		J^{n} : $\gamma(\theta)$ in $(\alpha, 2n\gamma)$.
3272.299 22	8		D		J^{π} : $\gamma(\theta)$ in $(\alpha, 2n\gamma)$.
3279.94 7	$2^+,3,4^+$		E	lm	XREF: l(3280)m(3282).
					J^{π} : γ 's to 2 ⁺ and 4 ⁺ .
3284.22 6	2+		E	lm	XREF: 1(3280)m(3282).
					J^{π} : γ' s to 0 ⁺ , 3 ⁺ and 3 ⁻ .
3288.91 9	1.2^{+}		Е	J	J^{π} : γ' s to 0^+ and 2^+ .
3290 763 23	Q (-)		Л		I^{π} : $\gamma(\theta)$ in $(\alpha 2n\gamma)$: $\Omega \gamma$ to $7^{(-)}$
3302 0 10	1 2+		- н	N	XREF N(3300)
5502.0 10	1,2		11	IN	π (3500). π : α excitation from 0^+
					$J = \frac{1}{2} - \frac{1}{2} - \frac{1}{2} + $
2207 27 6	7		D		$1_{1/2}=0.50 \text{ ps } 14 \text{ II J}=1, 1_{1/2}=0.28 \text{ ps } 15 \text{ II J}=2 \text{ from } (\gamma, \gamma').$
3307.37 0	/		ע _		$J^{*}: \gamma(\theta) \ln (\alpha, 2n\gamma).$
3308.5 5	2' to 6'		E		J^{*} : γ to 4'.
3318.98 15	0^{+} to 4^{+}		E		$J^{\prime\prime}$: γ to 2^{+} .
3336.22 4	8		D		J^{α} : $\gamma(\theta)$ in $(\alpha, 2n\gamma)$.
3336.51 <i>13</i>	2+,3+,4+		ΕI	J	XREF: I(3330).
					J^{π} : L=2 in (d,p); γ to 2 ⁺ and 4 ⁺ .

¹²⁴Te Levels (continued)

E(level) [†]	\mathbf{J}^{π}	XREF	Comments
3348.68 25	1.2^{+}	E	J^{π} : γ' s to 0 ⁺ and 2 ⁺ .
3350.958.16	Q(-)	 Д	I^{π} , $\gamma(\theta)$ in $(\alpha 2n\gamma) : \Omega \gamma$ to $7^{(-)}$
3355 2 3	2^{+} to 6^{+}	F	J^{π} : γ to A^+
3365 / 3 7	(7)	۲ ر	$J : \gamma (0, \tau)$ $I^{\pi} : \gamma(\theta) in (\alpha 2n\alpha)$
2267.08.2	(7)	D	$J : \gamma(0) \text{ in } (\alpha, 2n\gamma).$
2270 15 5	9	D	$J : \gamma(0) \text{ in } (\alpha, 2\pi\gamma).$
2270 45 12	0^{+} to 1^{+}		J^{-1} , $\gamma(\theta)$ III $(\theta, 2\Pi\gamma)$.
3370.43 12	0 10 4	E	$J : \gamma \cup Z$.
3382.932 18	(7) 1+2+		$J^{\text{m}}: \gamma(\theta) \text{ in } (\alpha, 2n\gamma).$
3393.63 13	1',2'	E J M	XKEF: $M(3390)$.
2200 (7.0	a + a +		$J^{\prime\prime}$: γ 's to 0 ⁺ and 3 ⁺ .
3399.67 9	2+,3+	E I	XREF: $I(3400)$.
	_		J^{Λ} : γ' 's to 2^+ and 4^+ and γ from $0^+, 1^+$ capture state.
3409.04 <i>4</i>	9	D	J^{n} : $\gamma(\theta)$ in $(\alpha, 2n\gamma)$.
3422.60 4	$6^{(+)}$	D m	XREF: m(3427).
			J^{π} : $\gamma(\theta)$ in $(\alpha, 2n\gamma)$; Q γ to 8^+ .
3430.04 18	$1^{-},2,3^{+}$	E J Lm	XREF: m(3427).
			J^{π} : γ' s to 1 and 3 ⁻ and γ from 0 ⁺ ,1 ⁺ capture state.
3438.70 21	0^{+} to 4^{+}	E n	XREF: n(3440).
			J^{π} : γ to 2^+ .
3443.05 6	1.2^{+}	E n	XREF: n(3440).
	,		J^{π} : γ' s to 0 ⁺ .
3444.03 3	(5.6)	D	J^{π} : $\gamma(\theta)$ in $(\alpha, 2n\gamma)$.
3450.78.9	$1^{-}.2^{+}$	E	J^{π} : γ to 0 ⁺ and 3 ⁻ .
3452.69.3	(6)	D	$I^{\pi} \cdot \gamma(\theta) \text{ in } (\alpha 2n\gamma)$
3456 61 13	$2^+ 3 4^+$	F m	XRFF: m(3457)
5450.01 15	2,3,4	L m	I^{π} , α' s to 2^+ and 4^+
3460 35 21	1.2+	F m	$Y = \frac{1}{2} $
5400.55 21	1,2	E m	$\pi_{\rm r} = 0^+$
217161 12	0^{\pm} to 4^{\pm}	E	J^{*} , $\gamma 100$, YDEE m(2476)
54/4.04 12	0 10 4	E M	$\pi \pi = -2^{+}$
2475 54 9	$((\mathbf{J}))$	P	J^{**} : γ to 2^{*} .
34/5.54 8	(6, 7)	U T	$J^{\alpha}: \gamma(\theta) \ln (\alpha, 2n\gamma).$
34/9.37 9	0° to 3°	E J mN	XREF: $m(34/6)$.
	-(1)		$J'': \gamma'$ to 2' and 1',(2').
34/9.56 4	6(+)	D	J^{n} : $\gamma(\theta)$ in $(\alpha, 2n\gamma)$; Q γ to 8 ⁺ .
3487.16 22	1,2+	E	J^{π} : γ to 0^+ .
3490.25 11	0^{+} to 3^{+}	E	J^{π} : γ' s to 1 ⁺ and 2 ⁺ .
3497.54 <i>23</i>	2^{+} to 6^{+}	E	J^{π} : γ to 4^+ .
3513.44 10	5,6,7	Din	XREF: i(3520)n(3520).
			J^{π} : $\gamma(\theta)$ in $(\alpha, 2n\gamma)$.
3526.692 23	(7,8)	D	J^{π} : $\gamma(\theta)$ in $(\alpha, 2n\gamma)$.
3530.04 10	$1^{-},2^{+}$	EGIJ MN	XREF: I(3520)M(3526)N(3520).
			J^{π} : γ to 0^+ and 3^- .
3537.68 14	1.2^{+}	Е	J^{π} : γ to 0^+ .
3543.09 10	$1^{-}.2^{+}$	ЕН	J^{π} : γ -excitation from 0^+ : γ to 3^- .
	- ,-		$T_{1/2}=33$ fs 5 if I=1. $T_{1/2}=30$ fs 5 if I=2 from $(\gamma \gamma')$
3550.00.3	$10^{(+)}$	D	$I_{1/2}^{\pi} = o(\theta) \text{ in } (\sigma 2\pi \alpha); O \neq (\sigma 2^+)$
3554 45 10	7	D	J : $\gamma(0)$ in $(\alpha, 2n\gamma)$, Q γ to 8 . $I^{\pi_1} \alpha(\theta)$ in $(\alpha, 2n\gamma)$
2576 02 20	$2^{+}2^{+}4^{+}$		J : $f(0)$ III $(0,2117)$. VDEE : $f(2540)1(2590)M(2547)N(2570)$
3370.03 20	2,3,4	E I IIIN	$\pi (300) = 14^{\pm} = 0.0^{\pm} (300) = 72^{\pm}$
	o.t. (.t.		$J^{\prime\prime}$: γ 's to 2 ⁺ and 4 ⁺ ; L=0+2 in (³ He,d) from $1/2^+$.
3588.3 <i>3</i>	0^{+} to 4^{+}	E ln	XREF: 1(3580)n(3590).
			J^{n} : γ to 2^{+} .
3598.975 21	9(-)	D	J^{π} : $\gamma(\theta)$ in $(\alpha, 2n\gamma)$; Q γ to $7^{(-)}$.
3599.3 <i>3</i>	$2^+, 3, 4^+$	E n	XREF: n(3590).
			J^{π} : γ 's to 2 ⁺ and 4 ⁺ .
3622.07 8	$1^{-},2^{+}$	E m	XREF: m(3626).

¹²⁴Te Levels (continued)

E(level) [†]	\mathbf{J}^{π}	$T_{1/2}$		XRE	F	Comments
						J^{π} : γ' s to 0 ⁺ and 3 ⁻ .
3628.53 9	$1,2^{+}$		Е		m	XREF: m(3626).
						J^{π} : γ to 0^+ .
3652.13 6	(7)		D			J^{π} : $\gamma(\theta)$ in $(\alpha, 2n\gamma)$.
3652.81 10	$1,2^{+}$		E		m	XREF: m(3653).
						J^{π} : γ to 0^+ .
3654.4 4	2+	39 fs 9	E	Н	m	XREF: m(3653).
2662.00.12	a+ a ++		_			J^{π} : γ to 0^+ and 4^+ .
3662.00 13	2',3,4'		E			$J'': \gamma$ to 2' and 4'.
3666.90 10	1' to 3'		E		LM	XKEF: $L(30/0)M(3009)$.
2695 70 12	0^+ to 4^+		F		м	γ s to 2° and 3° and γ from 0°, 1° capture state.
5065.70 15	0 10 4		E		n	AREF. $M(5090)$. I^{π} , μ to 2^+
3703 487 23	8		л			$J : \gamma = 0 2$. $I^{\pi} : \gamma(\theta) \text{ in } (\alpha 2n\gamma)$
3709 72 8	2^+		F	т		$XRFF \cdot I(3710)$
5107.12 0	2		-	-		$I^{\pi} \cdot \gamma' s \text{ to } 0^+ 3^+ \text{ and } 3^-$
3713.99 7	(8.9)		D			J^{π} : $\gamma(\theta)$ in $(\alpha/2n\gamma)$.
3723.63 16	$2^+.3.4^+$		Ē		1M	XREF: 1(3750)M(3730).
	_ ,= , :		_			J^{π} : γ 's to 2 ⁺ and 4 ⁺ .
3755.65 6	1.2^{+}		Е		lM	XREF: 1(3750)M(3754).
	,					J^{π} : γ to 0^+ .
3774.1 5	$1,2^{+}$		E	i	n	XREF: i(3780)n(3790).
						J^{π} : γ to 0^+ .
3805.40 15	0^{+} to 3^{+}		E	i	lm	XREF: i(3780)l(3810)m(3807).
						J^{π} : γ to 2^+ and γ from $0^+, 1^+$ capture state.
3810.07 11	0^{+} to 3^{+}		E		1Mn	XREF: l(3810)M(3829)n(3790).
						J^{π} : γ to 2^+ and γ from $0^+, 1^+$ capture state.
3836.46 10	(9)		D			J^{π} : $\gamma(\theta)$ in $(\alpha, 2n\gamma)$.
3845.22 11	8		D		M	J^{π} : $\gamma(\theta)$ in $(\alpha, 2n\gamma)$.
3850.54 5	11		D			J^{n} : $\gamma(\theta)$ in $(\alpha, 2n\gamma)$.
3853.57 13	0^{+} to 3^{+}		E		M	XREF: $M(3855)$.
29(2(2))	0+ 4 2+		-			J^{*} : γ to 2' and γ from 0',1' capture state.
3802.0 3	0. 10.3.		E		m	AREF: $III(38/1)$.
3872 32 5	(0, 10)		р			J^{π} : γ to Z and γ from 0, 1 capture state.
3880.20.17	(9,10) 1.2 ⁺		U E		m	J^{*} . $\gamma(0)$ III ($(\ell, 2\Pi\gamma)$).
5660.20 17	1,2		L		m	I^{π} : γ to 0^+
3884 87 11	1 2+		F		٦м	$XRFE \cdot 1(3890)M(3887)$
5001.07 11	1,2		-			$I^{\pi} \cdot \gamma \text{ to } 0^+$
3904.12 16	0^{+} to 3^{+}		Е		1	XREF: 1(3890).
						J^{π} : γ to 2 ⁺ and γ from 0 ⁺ .1 ⁺ capture state.
3929.47 12	$1,2^{+}$		Е			J^{π} : γ to 0^+ .
3931.57 <i>3</i>	10		D			J^{π} : $\gamma(\theta)$ in $(\alpha, 2n\gamma)$.
3945.22 22	$1,2^{+}$		Е			J^{π} : γ to 0^+ .
3946.40 18	$1,2^{+}$		E			J^{π} : γ to 0^+ .
3967.34 16	$1^{-},2^{+}$		E			J^{π} : γ 's to 0 ⁺ and 3 ⁻ .
3984.78 10	(8)		D			J^{π} : $\gamma(\theta)$ in $(\alpha, 2n\gamma)$.
3988.593 24	$11^{(-)}$		D			J^{π} : $\gamma(\theta)$ in $(\alpha, 2n\gamma)$; Q γ to $9^{(-)}$.
3989.1 9	0^{+} to 3^{+}		E			J^{π} : γ to 2 ⁺ and γ from 0 ⁺ ,1 ⁺ capture state.
3996.33 14	0^{+} to 4^{+}		E			J^{π} : γ to 2^+ .
3998.3 5	1,2+		E			J^{n} : γ to 0 ⁺ .
4010.8 4	1,2+		E			J'' : γ to 0^+ .
4030.3 3	0^+ to 3^+		E			J^{n} : γ to 2^{+} and γ from 0^{+} , 1^{+} capture state.
4032.76 3	11(-)		D			J^{α} : $\gamma(\theta)$ in $(\alpha, 2n\gamma)$; Q γ to $9^{(-)}$.
4034.43 3	(10)		D			J^{α} : $\gamma(\theta)$ in $(\alpha, 2n\gamma)$.

¹²⁴Te Levels (continued)

E(level) [†]	J^{π}	XREF	Comments
4043.80 14	0^+ to $3^{(-)}$	E	I^{π} : γ 's to 2 ⁺ and 1 ⁽⁻⁾ .
4051.40.5	11	D	J^{π} : $\gamma(\theta)$ in $(\alpha, 2n\gamma)$.
4051.51 12	0^{+} to 3^{+}	Ē	J^{π} : γ to 2^+ and γ from 0^+ 1^+ capture state.
4057.22 18	0^{+} to 4^{+}	E	J^{π} : γ to 2^+ .
4090.23 15	1.2+	EH	J^{π} : γ to 0^+ .
	,		$T_{1/2}=35$ fs 7 if J=1, $T_{1/2}=32$ fs 6 if J=2 in (γ, γ') .
4099.2 4	0^{+} to 3^{+}	Е	J^{π} : γ to 2 ⁺ and γ from $0^+, 1^+$ capture state.
4114.08 4	(9,10)	D	J^{π} : $\gamma(\theta)$ in $(\alpha, 2n\gamma)$.
4114.37 13	0^{+} to 4^{+}	E	J^{π} : γ to 2^+ .
4118.1 10	$1,2^{+}$	Н	J^{π} : γ to 0^+ .
4128.1 4	1,2+	E	J^{π} : γ to 0^+ .
4142.20 13	$2^+, 3, 4^+$	E	J^{π} : γ 's to 2 ⁺ and 4 ⁺ .
4144.48 14	0^{+} to $3^{(-)}$	E	J^{π} : γ' s to 2 ⁺ and 1 ⁽⁻⁾ .
4146.51 16	$1,2^{+}$	E	J^{π} : γ to 0^+ .
4155.38 <i>13</i>	2^{+} to 6^{+}	E	J^{π} : γ to 4^+ .
4170.7 <i>3</i>	$1,2^{+}$	E	J^{π} : γ to 0^+ .
4173.68 4		D	
4177.79 22	1,2+	E	J^{π} : γ to 0^+ .
4195.06 20	1,2	E	J^{π} : γ 's to 1 ⁺ , 2 ⁺ , 2 ⁻ and 1 ⁽⁻⁾ .
4215.4 4	1,2+	E	J^{π} : γ to 0^+ .
4229.22 21	1,2+	E	J^{π} : γ to 0^+ .
4238.39 5		D	
4241.0 15	0^+ to 4^+	E	J^{π} : γ to 2^{\pm} .
4244.8 5	0' to 3'	E	J^{π} : γ 's to 1' and 2'.
4270.3 5	1,21	E	$J^{\prime\prime}$: γ to 0° .
4286.07 3	2+	D	$T\pi$ / , 0+ 1.4+
4289.40 11	2^+	E	J^{*} : γ s to U^{*} and 4^{*} .
4302.01 21	0 10 5 1 2 ⁺	E	$J : \gamma \downarrow 0 I$.
4324.4 3	$^{1,2}_{1,2^+}$	E E	$J : \gamma = 0 0$.
4327.4 4	0^+ to 4^+	F	$J : \gamma = 0 0$. $I^{\pi} : \gamma = 0 0^{+}$
4379 47 10	0^{+} to 3^{+}	F	I^{π} : $\gamma' = 0^{2} 2^{+}$
4415 32 16	0^{+} to 3^{+}	Ē	I^{π} : γ to 2^+ and γ from 0^+ 1^+ capture state
4439.4.5	0^+ to $3^{(-)}$	F	I^{π} : γ to $I^{(-)}$ and 2^+
4444 8 5	0^{+} to 3^{+}	Ē	I^{π} : γ to 2^+ and γ from 0^+ 1^+ capture state
4453.7.3	0^{+} to 3^{+}	Ē	J^{π} : γ to 2^+ and γ from 0^+ 1^+ capture state.
4487.3 5	1.2+	Ē	J^{π} : γ to 0^+ .
4501.24 16	0^+ to 3^+	E	J^{π} : γ to 2 ⁺ and γ from 0 ⁺ ,1 ⁺ capture state.
4504.3 7	0 to 2	Е	J^{π} : γ to $1^{(-)}$ and γ from $0^+, 1^+$ capture state.
4524.4 3	0^{+} to 3^{+}	Е	J^{π} : γ to 2 ⁺ and γ from 0 ⁺ .1 ⁺ capture state.
4528.1 <i>3</i>	0^{+} to 3^{+}	Е	J^{π} : γ to 2 ⁺ and γ from 0 ⁺ , 1 ⁺ capture state.
4551.5 <i>3</i>	$1,2^{+}$	Е	J^{π} : γ to 0^+ .
4568.9 <i>3</i>	1,2+	Е	J^{π} : γ to 0^+ .
4580.97 21	$1,2^{+}$	ЕН	J^{π} : γ to 0^+ .
4598.5 <i>3</i>	$1,2^{+}$	E	J^{π} : γ to 0^+ .
4630.1 6	1,2+	E	J^{π} : γ to 0^+ .
4643.46 25	1,2+	E	J^{π} : γ to 0^+ .
4698.0 6	1,2+	E	J^{π} : γ to 0^+ .
4701.95 21	0^+ to 4^+	E	$J'': \gamma$ to 2^+ .
4712.90 17	0^+ to 3^+	E	J": γ to 2 ⁺ and γ from 0 ⁺ , 1 ⁺ capture state.
4/23.5 4	0^{+} to 3^{+}	E	J ^{α} : γ to 2' and γ from 0',1' capture state.
4/3/.28 21	U' to 4'	E	$J^{\prime\prime}$: γ to 2^{\prime} .
4/39.03 13	1,2'	E	$J'': \gamma \downarrow 0 \cup J'$.
4/34./1 18 1761 1 1	$1,2^+$ 1,2 ⁺	E F	J^{π} , γ to U^{π} .
4/04.4 4	1,2	E	\mathbf{J}^{*} , γ to \mathbf{U}^{*} .

¹²⁴Te Levels (continued)

E(level) [†]	J^{π}	XREF	Comments
4811.2 15	0^{+} to 3^{+}	Е	J^{π} : γ to 2 ⁺ and γ from 0 ⁺ ,1 ⁺ capture state.
4818.3 5	0^{+} to 3^{+}	Е	J^{π} : γ 's to 1 ⁺ and 2 ⁺ .
4883.27 21	$1,2^{+}$	Е	J^{π} : γ to 0 ⁺ .
4889.30 16	$1,2^{+}$	Е	J^{π} : γ to 0^+ .
4897.6 4	0^{+} to 3^{+}	Е	J^{π} : γ to 2 ⁺ and γ from 0 ⁺ , 1 ⁺ capture state.
4911.41 22	$2^+, 3^+$	Е	J^{π} : γ 's to 2 ⁺ and 4 ⁺ and γ from 0 ⁺ ,1 ⁺ capture state.
4915.7 <i>3</i>	$1,2^{+}$	E	J^{π} : γ to 0^+ .
4932.0 5	0^{+} to 3^{+}	Е	J^{π} : γ to 2 ⁺ and γ from 0 ⁺ ,1 ⁺ capture state.
4941.8 <i>4</i>	$1,2^{+}$	Е	J^{π} : γ to 0 ⁺ .
4962.51 16	0^{+} to 3^{+}	Е	J^{π} : γ to 2 ⁺ and γ from 0 ⁺ ,1 ⁺ capture state.
4979.58 17	0^{+} to 3^{+}	Е	J^{π} : γ to 2 ⁺ and γ from 0 ⁺ , 1 ⁺ capture state.
4984.7 8	0^{+} to 3^{+}	E	J ^{π} : γ to 1,2 ⁺ and γ from 0 ⁺ ,1 ⁺ capture state.
4990.4 <i>3</i>	0^{+} to 3^{+}	E	J^{π} : γ to 2 ⁺ and γ from 0 ⁺ ,1 ⁺ capture state.
4993.51 21	$1,2^{+}$	Е	J^{π} : γ to 0^+ .
5036.9 5	$1,2^{+}$	E	J^{π} : γ to 0^+ .
5050.72 25	$1,2^{+}$	E	J^{π} : γ to 0^+ .
5075.83 23	$1,2^{+}$	E	J^{π} : γ to 0^+ .
5127.29 19	0^{+} to 4^{+}	E	J^{π} : γ to 2^+ .
5132.3 7	$1,2^{+}$	E	J^{π} : γ to 0^+ .
5155.94 <i>13</i>	$1,2^{+}$	E	J^{π} : γ to 0^+ .
5169.7 4	$1,2^{+}$	E	J^{π} : γ to 0^+ .
5285.5 6	0^{+} to 4^{+}	E	J^{π} : γ to 2^+ .
5319.2 7	0^{+} to 3^{+}	E	J^{π} : γ to 1,2 ⁺ and γ from 0 ⁺ ,1 ⁺ capture state.
5423.9 4	0^{+} to 3^{+}	E	J^{π} : γ to 2 ⁺ and γ from 0 ⁺ ,1 ⁺ capture state.
5445.4 <i>4</i>	$1,2^{+}$	E	J^{π} : γ to 0^+ .
5488.5 6	$1,2^{+}$	E	J^{π} : γ to 0^+ .
5751.40 23	0^{+} to 3^{+}	E	J^{π} : γ to 2^+ and γ from $0^+, 1^+$ capture state.

[†] From a least-squares fit to the adopted E γ 's. Others are average of reaction data. [‡] From Doppler broadening (GRID technique) in (n, γ) E=thermal, unless otherwise noted.

						Adopted Le	vels, Gam	mas (continue	ed)	
							γ (¹²⁴ Te	<u>e)</u>		
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	Ι _γ @	E_f	\mathbf{J}_f^{π}	Mult. ^a	$\delta^{\boldsymbol{b}}$	α^{c}	$\mathbf{I}_{(\gamma+ce)}$	Comments
602.7271	2+	602.7260 <i>23</i>	100.0	0.0	0+	E2		0.00490		B(E2)(W.u.)=31.1 5 α (K)=0.00420 6; α (L)=0.000566 8; α (M)=0.0001132 16; α (N+)=2.45×10 ⁻⁵ 4 α (N)=2.22×10 ⁻⁵ 4; α (O)=2.33×10 ⁻⁶ 4 Mult.: from K/L ratio in ¹²⁴ I ε decay.
1248.5811	4+	645.8520 <i>19</i>	100.0	602.7271	2+	E2		0.00409		E _γ : from 2000He14. B(E2)(W.u.)=(97.529 4) α (K)=0.00351 5; α (L)=0.000467 7; α (M)=9.35×10 ⁻⁵ 13; α (N+)=2.03×10 ⁻⁵ 3 α (N)=1.84×10 ⁻⁵ 3; α (O)=1.94×10 ⁻⁶ 3 E _γ : from 2000He14. Mult.: γ γ(θ) and α (K)exp in ¹²⁴ Sb β ⁻ decay
1325.5131	2+	722.782 3	100.0 <i>3</i>	602.7271	2+	M1+E2(+E0)	-3.4 3	0.00314		B(M1)(W.u.)=0.0467 7 α (K)=0.00271 4; α (L)=0.000352 5; α (M)=7.02×10 ⁻⁵ 10; α (N+)=1.529×10 ⁻⁵ 22 α (N)=1.382×10 ⁻⁵ 20; α (O)=1.471×10 ⁻⁶ 22
		1325.504 4	16.1 5	0.0	0+	E2		8.27×10 ⁻⁴		E _γ : from 2000He14. B(E2)(W.u.)=0.49 +5-10 α (K)=0.000693 10; α (L)=8.48×10 ⁻⁵ 12; α (M)=1.685×10 ⁻⁵ 24; α (N+)=3.16×10 ⁻⁵ 5 α (N)=3.33×10 ⁻⁶ 5; α (O)=3.62×10 ⁻⁷ 5; α (IPF)=2.79×10 ⁻⁵ 4 E _γ : from 2000He14. Mult.: α (K)exp in (n, γ) and γ (θ) in (n,n' γ).
1657.283	0+	1054.551 22	100.0 8	602.7271	2+	E2		1.29×10 ⁻³		B(E2)(W.u.)=20 4 α (K)=0.001115 16; α (L)=0.0001392 20; α (M)=2.77×10 ⁻⁵ 4; α (N+)=6.05×10 ⁻⁶ 9 α (N)=5.46×10 ⁻⁶ 8; α (O)=5.90×10 ⁻⁷ 9 Mult.: $\gamma\gamma(\theta)$ and α (K)exp in (n, γ) E=thermal.
		1658.1 <i>12</i>		0.0	0+	EO			0.016 3	Mult.: from (n,γ) . $q_{K}^{2}(E0/E2)=0.087\ 23, X(E0/E2)=0.014\ 4,$ $\rho^{2}(E0)=0.012\ 3\ (2005Ki02, evaluation).$
1746.958	6+	498.369 <i>12</i>	100	1248.5811	4+	E2		0.00823		α (K)=0.00701 <i>10</i> ; α (L)=0.000982 <i>14</i> ; α (M)=0.000197 <i>3</i> ; α (N+)=4.25×10 ⁻⁵ <i>6</i> α (N)=3.85×10 ⁻⁵ <i>6</i> ; α (O)=3.99×10 ⁻⁶ <i>6</i> Mult.: from $\gamma(\theta)$ in (α ,2n γ) and $J^{\pi'}$ s of relevant levels.

From ENSDF

 $^{124}_{52}$ Te₇₂-10

L

	Adopted Levels, Gammas (continued)										
	γ ⁽¹²⁴ Te) (continued)										
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	Ι _γ @	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult. ^a	$\delta^{\boldsymbol{b}}$	α ^{C}	$I_{(\gamma+ce)}$	Comments		
1882.92	0+	226.4 557.43 <i>3</i>	100.0 10	$\begin{array}{cccc} 1657.283 & 0^+ \\ 1325.5131 & 2^+ \end{array}$	E0 E2		0.00604	0.070 11	Mult.: from (n, γ). B(E2)(W.u.)=3.5×10 ² +7-10 α (K)=0.00516 8; α (L)=0.000706 10; α (M)=0.0001415 20; α (N+)=3.06×10 ⁻⁵		
		1883 3		0.0 0+	EO			0 317 11	$\alpha(N)=2.77\times10^{-5} 4$; $\alpha(O)=2.90\times10^{-6} 4$ Mult.: from $\gamma\gamma(\theta)$ in (n,γ) E=thermal and J^{π} of relevant levels. Mult.: from (n, α) E=thermal		
1957.902	4+	632.38 <i>5</i> 709.303 <i>13</i>	7.65 <i>20</i> 100.0 <i>7</i>	$\begin{array}{c} 0.0 & 0 \\ 1325.5131 & 2^{+} \\ 1248.5811 & 4^{+} \end{array}$	M1+E2(+E0)	-0.18 5	0.00402	0.517 11	$\alpha(K)=0.00349 \ 5; \ \alpha(L)=0.000429 \ 7; \\ \alpha(M)=8.53\times10^{-5} \ 13; \ \alpha(N+)=1.87\times10^{-5} \ 3^{-5} \ 13; \ \alpha(N+)=1.87\times10^{-5} \ 3^{-5} \ 13^{-5}$		
		1355.169 <i>11</i>	78.5 19	602.7271 2+	E2(+M3)	-0.32 +25-18	0.0011 4				
									$\begin{aligned} \alpha(N) = 4.5 \times 10^{-6} \ I6; \ \alpha(O) = 4.9 \times 10^{-7} \ I7; \\ \alpha(IPF) = 3.2 \times 10^{-5} \ 4 \\ I_{\gamma}: \text{ Average of B- decay, } \varepsilon \text{ decay, } (n,\gamma) \\ E = \text{thermal and } (n,n'\gamma). \\ \gamma\gamma(\theta) \text{ and } \alpha(K) \text{exp in } ^{124} \text{Sb } \beta^- \text{ decay.} \\ \delta: \text{ from } 1993 \text{Gol0.} \end{aligned}$		
2039.293	3+	713.776 [#] 2	100.0 ^{&} 18	1325.5131 2+	M1+E2	-3.9 2	0.00323		B(M1)(W.u.)=0.0028 6; B(E2)(W.u.)=59 10 α (K)=0.00278 4; α (L)=0.000362 5; α (M)=7.23×10 ⁻⁵ 11; α (N+)=1.574×10 ⁻⁵ 23 α (N)=1.422×10 ⁻⁵ 20; α (O)=1.513×10 ⁻⁶ 22 E _{γ} ,I _{γ} : from (n, γ) E=thermal. Mult., δ : From $\gamma(\theta)$ and linear polarization in 1980CoZK		
		790.711 [#] 3	31.7 ^{&} 24	1248.5811 4+	M1+E2	-4.3 3			E _γ ,I _γ : from (n,γ) E=thermal. Mult.,δ: From $\gamma(\theta)$ in 1989GoZK and $J^{\pi'}$ s of relevant levels.		
		1436.559 [#] 5	54.3 ^{&} 24	602.7271 2+	M1+E2	+3 +15-2			E_{γ} , I_{γ} : from (n, γ) E=thermal. Mult.,δ: From γ(θ) 1990Be50 and relevant levels.		

L

$\gamma(^{124}\text{Te})$ (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	$I_{\gamma}^{@}$	\mathbf{E}_f J ²	f Mult.	δ^{b}	α^{C}	Comments
2039.421	2+	382.00 16	1.57 11	1657.283 0	+			E_{γ}, I_{γ} : from (n, γ) E=thermal.
		713.906 [#] 2	3.7 ^{&} 21	1325.5131 2	÷			E_{γ}, I_{γ} : from (n, γ) E=thermal.
		790.837 [#] 3	3.7 ^{&} 21	1248.5811 4	+			E_{γ}, I_{γ} : from (n, γ) E=thermal.
		1436.689 [#] 5	100.0 ^{&} 21	602.7271 2	+ M1+E2	+0.13 4		E_{γ}, I_{γ} : from (n, γ) E=thermal.
								Mult., δ : from $\gamma(\theta)$ in 1990Be50 and $J^{\pi'}$ s of relevant levels.
		2039.36 [#] 3	56.8 <mark>&</mark> 6	0.0 0	+ E2		6.67×10^{-4}	B(E2)(W.u.)=0.31 7
								$\alpha(K)=0.000305 5; \alpha(L)=3.64\times10^{-5} 5;$
								$\alpha(M) = 7.21 \times 10^{-6} \ 10; \ \alpha(N+) = 0.000319 \ 5$
								α (N)=1.427×10 ⁻⁶ 20; α (O)=1.562×10 ⁻⁷ 22; α (IPF)=0.000317 5
								Mult.: From $\gamma(\theta)$ and $\alpha(K)$ exp in (n,γ) E=thermal.
2091.603	2*	766.01 12	1.80 3	1325.5131 2	E0+E2,M	11	0.0030 4	$\alpha(K)=0.0026\ 4;\ \alpha(L)=0.00033\ 3;\ \alpha(M)=6.5\times10^{-5}$
								0; $\alpha(N+)=1.43\times10^{-5}$ 14 $\alpha(N)=1.20\times10^{-5}$ 12: $\alpha(O)=1.40\times10^{-6}$ 15
								$\alpha(N) = 1.29 \times 10^{-5} IS; \alpha(O) = 1.40 \times 10^{-5} IS$ Mult : from $\alpha(K)$ evp in ¹²⁴ Sh β^{-1} decay
		843.7.6	0.28.8	1248.5811 4	÷			Wull from $u(\mathbf{K}) c \mathbf{x} p$ in $\mathbf{S} \mathbf{S} p$ decay.
		1488.886 18	100.0 6	602.7271 2	⁺ M1(+E2)	+0.10 23	8.29×10 ⁻⁴ 16	$B(M1)(W.u.) = (0.022 \ 8); B(E2)(W.u.) = (0.1 + 4 - 10)$
								$\alpha(K)=0.000659 \ 14; \ \alpha(L)=7.92\times10^{-5} \ 16;$
								$\alpha(M)=1.57\times10^{-5}$ 3; $\alpha(N+)=7.51\times10^{-5}$ 12
								$\alpha(N)=3.11\times10^{-6}$ 7; $\alpha(O)=3.42\times10^{-7}$ 7;
								α (IPF)=7.17×10 ⁻⁵ 11
								Mult.: from $\alpha(K)$ exp in ¹²⁴ Sb β^- decay and (n,γ) E=thermal.
		2091.19 10	29.4 3	0.0 0	F			Reported in (n,γ) E=thermal only; not reported in
								$(n, n'a)$ decay (60.20 d), $(2+1)\varepsilon$ decay and
2153.29	0^{+}	827.78.3	100.0 10	1325.5131 2	+ E2		0.00222	$\alpha(K) = 0.00192.3; \alpha(L) = 0.000246.4;$
	Ŭ	02/11/0/0	10010 10	102010101 2			0100	$\alpha(M) = 4.90 \times 10^{-5} 7; \ \alpha(N+) = 1.069 \times 10^{-5} 15$
								$\alpha(N) = 9.65 \times 10^{-6} 14; \ \alpha(O) = 1.032 \times 10^{-6} 15$
								Mult.: from $\alpha(K)$ exp in $(n,\gamma)^{124}$ Sb β^- and $\gamma(\theta)$ in $(n,n'\gamma)$.
		1550.44 8	23.9 5	602.7271 2	÷			
2182.41	2+	856.84 <i>6</i>	9.2 9	1325.5131 2	+ M1,E2		0.0023 3	α (K)=0.00202 25; α (L)=0.00025 3; α (M)=5.0×10 ⁻⁵ 5; α (N+)=1.09×10 ⁻⁵ 12
								$\alpha(N)=9.9\times10^{-6}$ 10; $\alpha(O)=1.07\times10^{-6}$ 12
								From $\alpha(K)$ exp in (n, γ) E=thermal.
		1579.70 4	100.0 10	602.7271 2	* M1+E2(-	-E0) -0.177	7.71×10^{-4}	$\alpha(K)=0.000579 \ 9; \ \alpha(L)=6.95\times10^{-3} \ 11; \ \alpha(M)=1.379\times10^{-5} \ 20; \ \alpha(N+)=0.0001079 \ 16$

12

Adopted Levels, Gammas (continued)											
							$\gamma(^{124}\text{Te})$ (co	ontinued)			
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	$I_{\gamma}^{@}$	E_f J	\int_{f}^{π}	Mult. ^a	$\delta^{\boldsymbol{b}}$	α^{c}	Comments		
	_				<u> </u>				$\begin{aligned} \alpha(\text{K}) = 0.000579 \ 9; \ \alpha(\text{L}) = 6.95 \times 10^{-5} \ 11; \\ \alpha(\text{M}) = 1.379 \times 10^{-5} \ 20; \ \alpha(\text{N}+) = 0.0001079 \ 16 \\ \alpha(\text{N}) = 2.73 \times 10^{-6} \ 4; \ \alpha(\text{O}) = 3.00 \times 10^{-7} \ 5; \\ \alpha(\text{IPF}) = 0.0001048 \ 15 \\ \text{Mult.} \delta; \ \text{from } \gamma\gamma(\theta) \ \text{and} \ \alpha(\text{K}) \text{exp in } (n, \gamma). \end{aligned}$		
2182.41 2224 954	$2^+_{4^+}$	2182.41 12	11.5 <i>18</i> 21 3 5	0.0 ()+)+	(F 2)			Mult from $\gamma(\theta)$ in $(\alpha 2n\gamma)$ and $I^{\pi/s}$ of relevant levels		
2224.934	-	079.40 5	21.5 5	1525.5151 2	-	(E2)			Not observed in $(n,n'\gamma)$ and (n,γ) E=thermal.		
		976.352 25	100.0 11	1248.5811 4	1 ⁺]	M1+E2	+0.68 6	0.00180	$\alpha(K)=0.00156 \ 3; \ \alpha(L)=0.000192 \ 3; \ \alpha(M)=3.81\times10^{-5} \ 6; \ \alpha(N+)=8.37\times10^{-6} \ 14$		
									$\alpha(N)=7.54\times10^{-6} \ 12; \ \alpha(O)=8.23\times10^{-7} \ 14$ Mult.: from $\gamma(\theta)$ in $(n,n'\gamma)$ and $\alpha(K)\exp$ in (n,γ) . δ : from 1989GoZK.		
		1622.240 25	49.2 8	602.7271 2	2+]	E2		6.64×10^{-4}	$\alpha(K)=0.000467\ 7;\ \alpha(L)=5.64\times10^{-5}\ 8;\ \alpha(M)=1.118\times10^{-5}$		
									<i>I</i> 6; α (N+)=0.0001293 <i>I</i> 9 α (N)=2.21×10 ⁻⁶ <i>3</i> ; α (O)=2.41×10 ⁻⁷ <i>4</i> ;		
									α (IPF)=0.0001269 18		
2293.711	3-	254.39 9	0.034 2	2039.293	3+]	E1		0.01465	Mult.: from $\gamma(\theta)$ in (n,n' γ) and $J^{\mu\nu}$ s of relevant levels. B(E1)(W.u.)=3.0×10 ⁻⁵ 11		
									$\alpha(K)=0.01270 \ I8; \ \alpha(L)=0.001575 \ 23; \ \alpha(M)=0.000312 \ 5; \ \alpha(N+)=6.78 \times 10^{-5} \ I0$		
									$\alpha(N)=6.13\times10^{-9}$; $\alpha(O)=6.51\times10^{-6}$ 10 Mult.: From $\alpha(K)\exp in^{-124}Sb \beta^{-4}$ decay (60.20 d).		
									Fl: El γ from 3 ⁻ .		
		335.80 9	0.160 9	1957.902 4	1 ⁺]	E1		0.00706	B(E1)(W.u.)= $6.2 \times 10^{-5} 23$ α (K)= $0.00612 9$; α (L)= $0.000754 11$; α (M)= 0.0001495 21 ; α (N+)= $3.26 \times 10^{-5} 5$		
									$\alpha(N)=2.94\times10^{-5} 5; \alpha(O)=3.15\times10^{-6} 5$		
		068 105 1	3 063 17	1325 5131 0) + 1	E1(+M2)	0.02.2	6 53×10-4 11	Mult.: From α (K)exp in ¹²⁴ Sb β^- decay (60.20 d). $P(E_1)(W_{11}) = (6.4 \times 10^{-5} 2.3); P(M_2)(W_{11}) = (0.13 \pm 26, 13)$		
		908.195 4	5.905 17	1525.5151 2	<u> </u>	$EI(\pm ML2)$	-0.02 2	0.33×10 × 11	$\alpha(K)=0.000569 \ 9; \ \alpha(L)=6.78\times10^{-5} \ 11;$		
									$\alpha(M)=1.343\times10^{-5}$ 22; $\alpha(N+)=2.94\times10^{-6}$ 5		
									$\alpha(N)=2.65\times10^{-6} 5; \alpha(O)=2.89\times10^{-7} 5$ E : from 2000He14		
									Mult., δ : From $\gamma\gamma(\theta)$ and $\alpha(K)$ exp in ¹²⁴ Sb β^- decay		
		1045 105 4	2 97 4	1040 5011	(+)		0.02.2	5 (7) 10-4 10	(60.20 d).		
		1045.125 4	3.8/4	1248.3811 4	+']	E1(+M2)	-0.03 2	5.6/×10 ' 10	$\begin{aligned} &\alpha(K) = 0.00494 \ 9; \ \alpha(L) = 5.87 \times 10^{-5} \ 11; \\ &\alpha(M) = 1.163 \times 10^{-5} \ 21; \ \alpha(N+) = 2.55 \times 10^{-6} \ 5 \end{aligned}$		

From ENSDF

I							Adopted	l Levels, Gamma	as (continued)		
								$\gamma(^{124}\text{Te})$ (contin	nued)		
	E _i (level)	\mathbf{J}_i^{π}	${\rm E_{\gamma}}^{\dagger}$	$I_{\gamma}^{@}$	E_f	J_f^{π}	Mult. ^a	δ^{b}	α^{c}	$I_{(\gamma+ce)}$	Comments
	2202 711		1/00.071 /		602 2221	2+			(15, 10-4		B(E1)(W.u.)=(5.0×10^{-5} 18); B(M2)(W.u.)=($0.19 + 26 - 19$) α(K)= 0.000494 9; α(L)= 5.87×10^{-5} 11; α(M)= 1.163×10^{-5} 21; α(N+)= 2.55×10^{-6} 5 α(N)= 2.30×10^{-6} 4; α(O)= 2.51×10^{-7} 5 E _γ : from 2000He14. Mult.,δ: From γγ(θ) and α(K)exp in ¹²⁴ Sb β ⁻ decay (60.20 d).
	2293.711	3-	1690.971 4	100.0 3	602.7271	2+	E1+M2	+0.010 +3-4	6.15×10 ⁻⁴		B(E1)(W.u.)=0.00030 <i>11</i> ; B(M2)(W.u.)=0.05 4 $\alpha(K)=0.000213 \ 3; \ \alpha(L)=2.50\times10^{-5} \ 4;$ $\alpha(M)=4.94\times10^{-6} \ 7; \ \alpha(N+)=0.000372 \ 6$ $\alpha(N)=9.78\times10^{-7} \ 14; \ \alpha(O)=1.071\times10^{-7} \ 15;$ $\alpha(IPF)=0.000371 \ 6$ E _{γ} : from 2000He14. Mult.: From $\gamma\gamma(\theta)$ and $\alpha(K)$ exp in ¹²⁴ Sb β^- decay (60.20 d). δ : from averaged A ₂ and A ₄ values of $\gamma\gamma(\theta)$ in ¹²⁴ Sb β^- decay (60.20 d).
			2293.72 7	0.070 3	0.0	0+	[E3]		7.45×10 ⁻⁴		B(E3)(W.u.)= $1.5 \times 10^2 6$ $\alpha(K)=0.000412 6; \alpha(L)=5.03 \times 10^{-5} 7;$ $\alpha(M)=1.000 \times 10^{-5} 14; \alpha(N+)=0.000272 4$ $\alpha(N)=1.98 \times 10^{-6} 3; \alpha(O)=2.16 \times 10^{-7} 3;$ $\alpha(PE)=0.000270 4$
	2308.42	0+	426.2		1882.92	0^+	E0			0.036 13	Mult.: From ce in (n,γ) E=thermal. $q_{\rm K}^2(E0/E2)=0.8 \ 4, \ X(E0/E2)=2.1 \ 10,$ $\rho^2(E0)>0.3 \ (2005{\rm Ki})2 \ evaluation)$
			652.2		1657.283	0+	E0			< 0.007	Mult.: From ce in (n,γ) E=thermal. q_{K}^{2} (E0/E2)<0.2, X(E0/E2)<0.4, (2005Ki02, evaluation).
			1705.65 9	100.0 11	602.7271	2+	E2		6.50×10 ⁻⁴		$\alpha(K)=0.000424 \ 6; \ \alpha(L)=5.11\times10^{-5} \ 8; \\ \alpha(M)=1.013\times10^{-5} \ 15; \ \alpha(N+)=0.0001643 \ 23 \\ \alpha(N)=2.01\times10^{-6} \ 3; \ \alpha(O)=2.19\times10^{-7} \ 3; \\ \alpha(IPF)=0.0001621 \ 23$
			2309.5		0.0	0+	E0			< 0.007	Mult.: From ce in (n,γ) E=thermal. q_{K}^{2} (E0/E2)<0.2, X(E0/E2)<0.07 (2005Ki02, evaluation).
	2321.719 2322.95	(6 ⁺) 2 ⁺	1073.133 <i>19</i> 997.26 9	100 5.0 <i>13</i>	1248.5811 1325.5131	$4^+ 2^+$	(Q)				Mult.: from $\gamma(\theta)$ in $(\alpha, 2n\gamma)$.

 $^{124}_{52}$ Te₇₂-14

From ENSDF

 $^{124}_{52}$ Te₇₂-14

L

						Adopte	ed Levels, Ga	mmas (continue	<u>d)</u>
							$\gamma(^{124}\text{Te})$ (c	continued)	
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	$I_{\gamma}^{@}$	\mathbf{E}_{f}	\mathbf{J}_{f}^{π}	Mult. ^a	$\delta^{\boldsymbol{b}}$	α^{c}	Comments
2322.95	2+	1720.24 3	100.0 8	602.7271	2+	M1(+E2)	+0.18 20	7.18×10 ⁻⁴ 13	$\begin{aligned} \alpha(\text{K}) = 0.000484 \ 10; \ \alpha(\text{L}) = 5.79 \times 10^{-5} \ 11; \\ \alpha(\text{M}) = 1.148 \times 10^{-5} \ 22; \ \alpha(\text{N}+) = 0.0001648 \ 24 \\ \alpha(\text{N}) = 2.28 \times 10^{-6} \ 5; \ \alpha(\text{O}) = 2.50 \times 10^{-7} \ 5; \\ \alpha(\text{IPF}) = 0.0001622 \ 24 \\ \text{Mult.}\delta: \text{ from } \gamma\gamma(\theta) \text{ and } \alpha(\text{K}) \text{exp in } (n,\gamma) \text{ E=thermal.} \end{aligned}$
		2323.04 13	3.1 15	0.0	0^{+}				
2335.030	5-	377.17 3	3.8 14	1957.902	4+				~
		1086.450 <i>11</i>	100.0 8	1248.5811	4+	E1		5.24×10 ⁻⁴	$\alpha(K)=0.000457 7; \alpha(L)=5.43\times10^{-5} 8;$ $\alpha(M)=1.074\times10^{-5} 15; \alpha(N+)=2.36\times10^{-6} 4$ $\alpha(N)=2.13\times10^{-6} 3; \alpha(O)=2.32\times10^{-7} 4$ Mult.: from $\gamma(\theta)$ in $(\alpha, 2n\gamma)$ and linear polarization in $(n, n'\gamma)$.
2349.465	6+	602.70 20	100 26	1746.958	6+				Not reported in ¹²⁴ Sb β^- decay and (n, γ) E=thermal.
		1100.84 5	77.9 13	1248.5811	4+	E2		1.18×10 ⁻³	$\alpha(K)=0.001018 \ 15; \ \alpha(L)=0.0001264 \ 18; \\ \alpha(M)=2.51\times10^{-5} \ 4; \ \alpha(N+)=5.96\times10^{-6} \ 9 \\ \alpha(N)=4.96\times10^{-6} \ 7; \ \alpha(O)=5.36\times10^{-7} \ 8; \\ \alpha(IPF)=4.61\times10^{-7} \ 7 \\ Mult : \ from \ \gamma(\theta) \ in \ (\alpha \ 2n\chi) \ and \ J^{\pi'}s \ of \ relevant \ levels.$
2454.069	2^{+}	571.0 10	2.3 11	1882.92	0^{+}				
		1128.57 5	18.5 9	1325.5131	2^{+}				
		1205.44 <i>3</i>	10.4 13	1248.5811	4+				
		1851.38 4	100.0 12	602.7271	2+	M1+E2	+0.039 1	0.00067 3	α(K)=0.00039 3; α(L)=4.7×10-5 4; α(M)=9.3×10-6 7; α(N+)=0.000227 5 α(N)=1.83×10-6 13; α(O)=2.01×10-7 15; α(IPF)=0.000225 5 Mult.: from γ(θ) in (n,n'γ) and Jπ's of relevant levels. δ: from γ(θ) in (α,2nγ). others: -0.02 4 or +2.1 3 (1989GoZK).
2483 362	<u>4</u> +	2454.12 8	23 3	0.0	0 ⁺	E2		7.68×10 ⁻⁴	$\alpha(K)=0.000219 \ 3; \ \alpha(L)=2.59\times10^{-5} \ 4; \ \alpha(M)=5.13\times10^{-6} \ 8; \ \alpha(N+)=0.000518 \ 8 \ \alpha(N)=1.017\times10^{-6} \ 15; \ \alpha(O)=1.115\times10^{-7} \ 16; \ \alpha(IPF)=0.000517 \ 8 \ Mult.: from \ \gamma(\theta) \ in \ (n,n'\gamma) \ and \ J^{\pi'}s \ of \ relevant \ levels.$
2703.302	т	189.61 19	3.4 6	2293.711	3-				
		443.99 <i>f</i> 10	14 ^f 10	2039.421	2^{+}				E_{γ} , I_{γ} : from (n, γ) E=thermal.
		443.99 ^{<i>f</i>} 10	100.0 ^f 9	2039.293	3+	M1+E2		0.0120 6	α (K)=0.0103 7; α (L)=0.00138 3; α (M)=0.000276 7; α (N+)=6.00×10 ⁻⁵ 11

L

						Auopteu	Levels, Galli	mas (continu	eu)
						<u>.</u>	$\gamma(^{124}\text{Te})$ (cor	tinued)	
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	Ι _γ @	E_{f}	J_f^{π}	Mult. ^a	$\delta^{\boldsymbol{b}}$	α^{c}	Comments
									$\begin{aligned} &\alpha(\text{K})=0.0103 \ 7; \ \alpha(\text{L})=0.00138 \ 3; \ \alpha(\text{M})=0.000276 \ 7; \\ &\alpha(\text{N}+)=6.00\times10^{-5} \ 11 \\ &\alpha(\text{N})=5.43\times10^{-5} \ 11; \ \alpha(\text{O})=5.75\times10^{-6} \ 14 \\ &\text{E}_{\gamma},\text{I}_{\gamma}: \ \text{from } (n,\gamma) \ \text{E=thermal.} \\ &\text{Mult.: \ From } \alpha(\text{K})\text{exp in } ^{124}\text{Sb }\beta^{-} \ \text{decay } (60.20 \ \text{d}). \end{aligned}$
2483.362	4+	525.441 13	72 3	1957.902	4+	M1+E2		0.0077 7	$\begin{aligned} \alpha(\text{K}) = 0.0066 \ 6; \ \alpha(\text{L}) = 0.00087 \ 3; \ \alpha(\text{M}) = 0.000173 \ 6; \\ \alpha(\text{N}+) = 3.77 \times 10^{-5} \ 15 \\ \alpha(\text{N}) = 3.41 \times 10^{-5} \ 13; \ \alpha(\text{O}) = 3.64 \times 10^{-6} \ 22 \\ \text{Mult.: from } \gamma(\theta) \text{ in } (n,n'\gamma) \text{ and } \alpha(\text{K}) \text{exp in } ^{124} \text{Sb } \beta^- \\ \text{decay } (60.20 \ \text{d}). \\ \delta = -0.16 \ 6 \text{ or } +13 \ 2 \ (1989 \text{GoZK}). \end{aligned}$
		1234.2 5	45.5 23	1248.5811	4+				E_{γ} , I_{γ} : From (n, γ) E=thermal. Not observed in ¹²⁴ Sb β ⁻ decay (60.20 d).
2511.96	4	1263.37 5	100	1248.5811	4 ⁺	D			Mult.: from $\gamma(\theta)$ in $(\alpha, 2n\gamma)$.
2521.33	2*	1195.66 12	4.06 20	1325.5131	2+	$\mathbf{M}(1)$	0.00.2	$(00, 10^{-4})$	$(X) = 0.000207 ((X) = 4.00 (10^{-5} 7) (M) = 0.1(10^{-6})$
		1918.00 3	100.0 8	602.7271	2.	MI(+E2)	-0.02 3	6.98×10	$ α(K)=0.0003876; α(L)=4.62 \times 10^{-5}7; α(M)=9.16 \times 10^{-5} I3; α(N+)=0.0002564 $ $ α(N)=1.82 \times 10^{-6} 3; α(O)=2.00 \times 10^{-7} 3; α(IPF)=0.0002544 $ Mult.: from α(K)exp in (n,γ) and γ(θ) in (n,n'γ). δ: from 1989GoZK.
2529.60	1+	1204.1 <i>3</i> 1926.86 <i>10</i>	9 3 100.0 20	1325.5131 602.7271	2+ 2+	M1(+E2)	-0.14 10	6.97×10 ⁻⁴	$ α(K)=0.000382 6; α(L)=4.57×10^{-5} 7; α(M)=9.05×10^{-6} $ 14; α(N+)=0.000260 4 $α(N)=1.80×10^{-6} 3; α(O)=1.97×10^{-7} 3;$ α(IPF)=0.000258 4 Mult.: from $γ(θ)$ and $J^{π'}$ s of relevant levels. δ: from 1989GoZK.
2549.97 ((4)	1301.38 5	100	1248.5811	4 ⁺				
2589.61 (2504.46	(6) 5	842.65 9 368 2 5	100	1/46.958	0' ∕1+				
2074.40 .	5	636.58 5	21.8 14	1957.902	4+ 4	(D)			I _y : from $(\alpha, 2n\gamma)$. Mult : from $\gamma(\theta)$ in $(\alpha, 2n\gamma)$
		847.43 16	21.0 11	1746.958	6+				I_{γ} : from $(\alpha, 2n\gamma)$.
		1345.939 ⁸ 15	100.0 25	1248.5811	4+	D			Óbserved in $(\alpha, 2n\gamma)$ only: transition is questionable. (n, γ) E=thermal reports 1346.05 keV γ as unplaced γ . E _{γ} ,I _{γ} : from $(\alpha, 2n\gamma)$. Mult., δ : from $\gamma(\theta)$ in $(\alpha, 2n\gamma)$.
2600.95	1+	943.3 <i>3</i>	4.4 3	1657.283	0^{+}				
		1275.35 11	16.5 4	1325.5131	2^+				
		1998.15 6	100.0 10	602.7271	2^+				

$\gamma(^{124}\text{Te})$ (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	$I_{\gamma}^{@}$	E_f	\mathbf{J}_f^{π}	Mult. ^a	$\delta^{\boldsymbol{b}}$	α^{c}	Comments
2600.95	1+	2601.16 10	50.4 5	0.0	0^{+}				
2618.63	(3)	527.7 5	5.6 4	2091.603	2^{+}				
		1370.08 13	100 4	1248.5811	4+	D+Q			Mult.: from $\gamma(\theta)$ in $(n,n'\gamma)$. $\delta = +0.32.6 \text{ or } +9.+13-2 (1989GoZK)$.
		2015.85 8	35.2 11	602.7271	2+	D+Q	-0.29 12		Mult.: from $\gamma(\theta)$ in $(n,n'\gamma)$. δ : from 1989GoZK
2641 15	2^{+}	984 4 5	409	1657 283	0^{+}				0. Hom 1909002K.
2011.10	-	1315.66.10	8.1.8	1325.5131	2+				
		1392.58 16	4.4.4	1248.5811	$\frac{-}{4^{+}}$				
		2038.33 11	100.0 14	602.7271	2+	E2		6.67×10^{-4}	$\alpha(K)=0.000305 5; \alpha(L)=3.64\times10^{-5} 5; \alpha(M)=7.21\times10^{-6}$ 10: $\alpha(N+.)=0.000318 5$
									$\alpha(N)=1.428\times10^{-6} \ 20; \ \alpha(O)=1.563\times10^{-7} \ 22; \ \alpha(PE)=0.000317 \ 5$
2664.373	6	329.336 12	100	2335.030	5-	D+O	-0.19.2		Mult: from $\gamma(\theta)$ in $(\alpha, 2n\gamma)$.
									δ : from 1998Wa18.
2664.43	8+	917.44 5	100	1746.958	6+	E2		1.75×10^{-3}	α (K)=0.001515 22; α (L)=0.000192 3; α (M)=3.82×10 ⁻⁵ 6; α (N+)=8.34×10 ⁻⁶ 12
									$\alpha(N) = 7.53 \times 10^{-6} 11; \alpha(O) = 8.09 \times 10^{-7} 12$
									Mult.: from $\gamma(\theta)$ and $\alpha(K) \exp in (\alpha, 2n\gamma)$.
2673.771	$7^{(-)}$	338.754 11	2.86 11	2335.030	5-				
		926.78 4	100.0 13	1746.958	6+	D			Mult.: from $\gamma(\theta)$ in $(\alpha, 2n\gamma)$.
2681.46	2^{+}	641.9 ^e 3	3.3 ^e 26	2039.421	2^{+}				E_{γ}, I_{γ} : from (n, γ) E=thermal.
		641.9 ^e 3	3.3 ^e 26	2039.293	3+				E_{γ}, I_{γ} : from (n, γ) .
		2078.71 4	100.0 8	602.7271	2+	M1+E2	-0.14 3	7.07×10^{-4}	$\alpha(K)=0.000327 5; \alpha(L)=3.90\times10^{-5} 6; \alpha(M)=7.73\times10^{-6}$ 11; $\alpha(N+)=0.000333 5$
									α (N)=1.533×10 ⁻⁶ 22; α (O)=1.685×10 ⁻⁷ 24; α (IPF)=0.000331 5
									Mult.: from $\alpha(K)$ exp in ¹²⁴ I ε decay. δ : from 1989GoZK.
		2681.53 10	11.4 <i>13</i>	0.0	0^{+}				
2693.679	3-	209.86 7	0.10 2	2483.362	4+				
		371.00 11	0.70 9	2322.95	2^{+}				
		400.30 6	2.53 12	2293.711	3-	E2		0.01565	α (K)=0.01322 <i>19</i> ; α (L)=0.00195 <i>3</i> ; α (M)=0.000394 <i>6</i> ; α (N+)=8.45×10 ⁻⁵ <i>12</i>
									$\alpha(N) = 7.67 \times 10^{-5} 11; \alpha(O) = 7.80 \times 10^{-6} 11$
									Mult.: from $\alpha(K)$ exp in ¹²⁴ Sb β^- decay (60.20 d).
		469.06 7	0.91 5	2224.954	4+	E1		0.00309	$\begin{aligned} &\alpha(\text{K}) = 0.00269 \ 4; \ \alpha(\text{L}) = 0.000327 \ 5; \ \alpha(\text{M}) = 6.49 \times 10^{-5} \ 9; \\ &\alpha(\text{N}+) = 1.417 \times 10^{-5} \ 20 \\ &\alpha(\text{N}) = 1.279 \times 10^{-5} \ 18; \ \alpha(\text{O}) = 1.379 \times 10^{-6} \ 20 \\ &\text{Mult.: from } \alpha(\text{K}) \text{exp in} \ ^{124}\text{Sb} \ \beta^- \ \text{decay} \ (60.20 \ \text{d}). \end{aligned}$

17

						Levels, Gai	nmas (contin	ued)	
						í	$\gamma(^{124}\text{Te})$ (co	ontinued)	
E _i (level)	\mathbf{J}_i^{π}	${\rm E_{\gamma}}^{\dagger}$	Ι _γ @	E_f	\mathbf{J}_f^{π}	Mult. ^a	$\delta^{\boldsymbol{b}}$	α^{c}	Comments
2693.679	3-	735.9 ^{<i>f</i>} 7	1.30 ^{<i>f</i>} 12	1957.902	4+	E1		1.13×10 ⁻³	$\alpha(K)=0.000982 \ 14; \ \alpha(L)=0.0001180 \ 17; \\ \alpha(M)=2.34\times10^{-5} \ 4; \ \alpha(N+)=5.12\times10^{-6} \ 8 \\ \alpha(N)=4.62\times10^{-6} \ 7; \ \alpha(O)=5.01\times10^{-7} \ 7 $
		1368.157 5	47.7 4	1325.5131	2+	E1(+M2)	-0.02 1	4.78×10 ⁻⁴	Mult.: from α (K)exp in ¹²⁴ Sb β^- decay (60.20 d). α (K)=0.000303 5; α (L)=3.58×10 ⁻⁵ 6; α (M)=7.09×10 ⁻⁶ $I0$; α (N+)=0.0001314 $I9$ α (N)=1.403×10 ⁻⁶ 20; α (O)=1.534×10 ⁻⁷ 22;
									α (IPF)=0.0001298 <i>19</i> Mult.: from $\gamma\gamma(\theta)$ and α (K)exp in ¹²⁴ Sb β^- decay (60.20 d). E _{γ} : from 2000He14.
		1445.08 4	6.02 7	1248.5811	4+	E1(+M2)	+0.10 9	0.00052 4	$\alpha(K)=0.00029 \ 4; \ \alpha(L)=3.4\times10^{-5} \ 4; \ \alpha(M)=6.7\times10^{-6} \ 8; \\ \alpha(N+)=0.000186 \ 5 \\ \alpha(N)=1.34\times10^{-6} \ 16; \ \alpha(O)=1.46\times10^{-7} \ 18; \\ \alpha(IPF)=0.000184 \ 5 $
									Mult.: from $\gamma\gamma(\theta)$ in ¹²⁴ Sb β^- decay (60.20 d) and $J^{\pi'}$ s of relevant levels.
		2090.930 7	100.0 5	602.7271	2+	E1(+M2)	+0.03 2	8.38×10 ⁻⁴	$\begin{aligned} &\alpha(K) = 0.0001522\ 23;\ \alpha(L) = 1.78 \times 10^{-5}\ 3;\\ &\alpha(M) = 3.52 \times 10^{-6}\ 6;\ \alpha(N+) = 0.000664\ 10\\ &\alpha(N) = 6.97 \times 10^{-7}\ 11;\ \alpha(O) = 7.65 \times 10^{-8}\ 12;\\ &\alpha(IPF) = 0.000664\ 10\\ &E_{\gamma}:\ from\ 2000He14.\\ &Mult.,\delta:\ from\ \gamma\gamma(\theta)\ and\ \alpha(K)exp\ in\ ^{124}Sb\ \beta^{-}\ decay\\ &(60.20\ d).\\ &I_{\gamma}:\ intensity\ ratios\ to\ 1368\ keV\ \gamma\ are\ inconsistent \end{aligned}$
		2693.57 6	0.06 1	0.0	0^{+}				between decay data and (n,γ) E=thermal data.
2701.61	2-	662.23 [‡] <i>13</i>	3.3 3	2039.293	3+				
		743.2 ⁸ 3	0.95 25	1957.902	4+				Reported in ¹²⁴ I ε decay; not observed in ¹²⁴ Sb β^- decay (60.20 d). (n, n' γ) and (n γ) E=thermal.
		1376.10 3	100.0 6	1325.5131	2+	E1(+M2)	-0.01 3	4.79×10 ⁻⁴	$\begin{aligned} \alpha(\text{K}) = 0.000300 \ 5; \ \alpha(\text{L}) = 3.54 \times 10^{-5} \ 6; \ \alpha(\text{M}) = 7.01 \times 10^{-6} \\ 12; \ \alpha(\text{N}+) = 0.0001370 \ 20 \\ \alpha(\text{N}) = 1.387 \times 10^{-6} \ 23; \ \alpha(\text{O}) = 1.517 \times 10^{-7} \ 25; \\ \alpha(\text{IPF}) = 0.0001355 \ 19 \end{aligned}$
									Mult., δ : from $\gamma\gamma(\theta)$ and $\alpha(K)$ exp in ¹²⁴ Sb β^- decay (60.20 d).
2710.64	4+	2098.91 <i>10</i> 619.07 <i>14</i>	8.9 <i>3</i> 3.47 <i>24</i>	602.7271 2091.603	2^+ 2^+				(n,γ) E=thermal places this γ from 3756-keV level.
3,10101	•	962.78 ^g 24	168 13	1746.958	6+	Q			Reported in $(\alpha, 2n\gamma)$ only; intensity too large not to be

L

γ ⁽¹²⁴ Te) (continued)													
E _i (level)	\mathbf{J}_i^{π}	${\rm E_{\gamma}}^{\dagger}$	$I_{\gamma}^{@}$	E_f	\mathbf{J}_f^{π}	Mult. ^a	$\delta^{\boldsymbol{b}}$	α^{c}	Comments				
					<u> </u>				observed in other data sets.				
2710.64	4+	1205 11 1	100 4	1225 5121	2^+				Mult.: from $\gamma(\theta)$ in $(\alpha, 2n\gamma)$.				
2/10.04	4	1363.11 4	13 8 21	1323.3131	∠ ∕1+								
		2107 92 13	69 4 20	602 7271	2+				L : intensity ratios to 1385 keV γ are inconsistent between				
		2107.92.15	07.4 20	002.7271	2				(n, γ) E=thermal and other data.				
2713.77	(5.7)	966.81 12	100	1746.958	6+	D			Mult.: from $\gamma(\theta)$ in $(\alpha, 2n\gamma)$.				
2733.9	2^+ to 6^+	1485.3 3	100	1248.5811	4+								
2737.90	6 ⁽⁺⁾	402.86 7	7.7 7	2335.030	5-	D			Mult.: from $\gamma(\theta)$ in $(\alpha, 2n\gamma)$.				
	-	990.96 7	14.3 17	1746.958	6+	D+Q	-0.73 7		Mult., δ : from $\gamma(\theta)$ in $(\alpha, 2n\gamma)$.				
		1489.0 <i>3</i>	100.0 22	1248.5811	4^{+}	Q			Mult.: from $\gamma(\theta)$ in $(\alpha, 2n\gamma)$.				
2747.04	$1^{(-)}$	564.3 5	0.67 4	2182.41	2^{+}	-			• · · · · • • • •				
		2144.23 6	20.8 4	602.7271	2^{+}								
		2746.92 7	100.0 9	0.0	0^{+}								
2766.93	1^{+} to 4^{+}	675.61 18	7.7 8	2091.603	2^{+}								
		727.0 ^e 15	8 ^e 6	2039.421	2^{+}								
		727.0 ^e 15	8 ^e 6	2039.293	3+								
		2164.07 10	100.0 12	602.7271	2+								
2773.89	$6^{(+)}$	1026.922 25	100.0 3	1746.958	6+	D			Mult.: from $\gamma(\theta)$ in $(\alpha, 2n\gamma)$.				
		1526.0 6	64.6 22	1248.5811	4+	Q			Mult.: from $\gamma(\theta)$ in $(\alpha, 2n\gamma)$.				
2774.968	3-,4-	291.4 3	2.13 19	2483.362	4+								
		481.1 4	5.8 5	2293.711	3-								
		735.74 5 ‡3	13.6 ⁵ 14	2039.293	3+								
		816.85 11	16.3 20	1957.902	4^{+}								
		1526.24 5	100.0 10	1248.5811	4+	E1		5.35×10^{-4}	$\alpha(K)=0.000252 \ 4; \ \alpha(L)=2.96\times10^{-5} \ 5; \ \alpha(M)=5.86\times10^{-6} \ 9; \ \alpha(N+)=0.000248 \ 4$				
									$\alpha(N)=1.160\times10^{-6}$ 17; $\alpha(O)=1.270\times10^{-7}$ 18; $\alpha(IPF)=0.000247$ 4				
		2172 1 5	0.50.10	(00 5051	\mathbf{a}^{\pm}				Mult.: from $\alpha(K)$ exp in ¹²⁴ Sb β^- decay (60.20 d).				
2702 21	1+ 2+	21/2.1 5	0.50 10	602.7271	2 ⁺								
2183.21	1',2'	029.70 22	2.3 13	2105.29	0+								
		1123.81 12	5.95 25 100 0 20	1037.283	0+								
2700 41	0^{+} to 4^{+}	2103.20 IU 751 5 A	0.0 20	2030 421	2^{+}								
2170.41	0 10 4	1464 66 11	100 0 18	1325 5131	$\frac{2}{2^{+}}$								
		2188 00 15	41 4	602 7271	$\frac{2}{2^{+}}$								
2808.66	2+	717.3.5	10.2.25	2091.603	$\frac{2}{2}$ +								
_000.00	-	926.0 5	5.1 22	1882.92	$\tilde{0}^{+}$								
		2205.88 10	56 7	602.7271	2+								

					Ad	opted Levels	, Gammas	(continued)	
						γ (¹²⁴ T	e) (continue	ed)	
E _i (level)	J_i^π	E_{γ}^{\dagger}	Ι _γ @	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. ^a	$\delta^{\boldsymbol{b}}$	α^{c}	Comments
									6; α(N+)=0.000681 10 α(N)=8.01×10 ⁻⁷ 12; α(O)=8.79×10 ⁻⁸ 13; α(IPF)=0.000680 10 Mult.: from $\gamma(\theta)$ in (n,n' γ) and $J^{\pi'}$ s of relevant levels.
2814.53	2^+ to 5^+	775.25 [‡] 11 1565.93 11	77.5 22 100 <i>3</i>	2039.293 1248.5811	3+ 4+				
2817.48	2+	934.79 <i>14</i> 2214.43 <i>16</i>	4.6 <i>3</i> 100.0 <i>10</i>	1882.92 602.7271	$0^+ 2^+$				
2834.898	3-	351.47 <i>13</i> 541.21 <i>5</i> 609.92 <i>8</i> 743.18 <i>11</i> 795.62 ^e <i>7</i> 795.62 ^e <i>7</i> 876.97 <i>9</i>	$\begin{array}{c} 0.70 \ 10 \\ 6.9 \ 7 \\ 4.74 \ 15 \\ 0.39 \ 18 \\ 1.2^{e} \ 9 \\ 1.2^{e} \ 9 \\ 0.72 \ 3 \end{array}$	2483.362 2293.711 2224.954 2091.603 2039.421 2039.293 1957.902	$ \begin{array}{r} - & 4^+ \\ 3^- & 4^+ \\ 2^+ & 2^+ \\ 2^+ & 3^+ \\ 4^+ & 4^+ \end{array} $				
		1509.37 3	100.0 8	1325.5131	2+	E1		5.28×10 ⁻⁴	$\alpha(K)=0.000256 \ 4; \ \alpha(L)=3.02\times10^{-5} \ 5; \ \alpha(M)=5.97\times10^{-6} \ 9; \ \alpha(N+)=0.000235 \ 4 \ \alpha(N)=1.182\times10^{-6} \ 17; \ \alpha(O)=1.294\times10^{-7} \ 19; \ \alpha(IPF)=0.000234 \ 4 \ Mult.: from \ \alpha(K)exp in (n,\gamma) E=thermal.$
		1586.1 3	0.18 4	1248.5811	4^+	$\mathbf{E}_{1}(\mathbf{A},\mathbf{M}_{2})$.0.02.0	0.17.10-4	$(Z) = 0.000120.5 (1) = 1.(1) + 10^{-5}.7 (M) = 2.10 + 10^{-6}$
		2232.06 /	17.1 3	602.7271	2.	E1(+M2)	+0.03 8	9.1/×10	
2839.039	6	504.007 15	100	2335.030	5^{-}	D			Mult.: from $\gamma(\theta)$ in $(\alpha, 2n\gamma)$.
2844.498	(5)	361.135 ^d 18 1595.94 19	100 <i>4</i> 70 <i>3</i>	2483.362 1248.5811	4^+ 4^+ 2^+	D			Mult.: from $\gamma(\theta)$ in $(\alpha, 2n\gamma)$.
2858.90	2,3	819.5 3 2256.19 <i>17</i>	1.5 4 100.0 21	2039.293 602.7271	2^+	D+Q	-0.05 4		Mult.: from $\gamma(\theta)$ in $(n,n'\gamma)$.
2865.262	3-	530.231 <i>15</i> 571.41 <i>22</i>	100.0 <i>18</i> 45 <i>3</i>	2335.030 2293.711	5- 3-	Q			Mult.: from $\gamma(\theta)$ in $(\alpha, 2n\gamma)$.
2872.88	3+,4+,5+	1624.29 5	100	1248.5811	4^{+}	D			Mult.: from $\gamma(\theta)$ in $(\alpha, 2n\gamma)$.
2873.53	7	1126.57 5	100	1746.958	6+	D+Q			Mult.: from $\gamma(\theta)$ in $(\alpha, 2n\gamma)$. δ : -0.35 3 or 0.56 5; Other: -1.1 +5-9(1991Le16).
2880.33	5(+)	1133.37 5	100	1746.958	6+	D+Q	-0.47 3		Mult., δ : from $\gamma(\theta)$ in $(\alpha, 2n\gamma)$.
2884.2	$1,2^+$	2884.2	100	0.0	0^+				E_{γ} : from $(\gamma, \gamma), (\gamma, \gamma')$.
2886.05	3	402.80 20	2.70	2483.362	4'				

From ENSDF

 $^{124}_{52}$ Te₇₂-20

I

$\gamma(^{124}\text{Te})$ (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	$I_{\gamma}^{@}$	\mathbf{E}_{f}	\mathbf{J}_{f}^{π}	Mult. ^a	$\delta^{\boldsymbol{b}}$	α ^C	Comments
2886.05	3-	550.3 <i>4</i> 592.34 <i>4</i> 846.8 [‡] <i>3</i> 928.0 <i>4</i>	2.8 <i>4</i> 21.6 5 1.1 <i>3</i> 0.42 <i>18</i>	2335.030 2293.711 2039.293 1957.902	5 ⁻ 3 ⁻ 3 ⁺ 4 ⁺				
		1560.46 <i>13</i>	31.6 5	1325.5131	2+	E1(+M2)	-0.2 2	0.00059 10	α(K)=0.00028 11; α(L)=3.4×10-5 13; α(M)=7.E-6 3; α(N+)=0.000265 23 α(N)=1.3×10-6 6; α(O)=1.4×10-7 6; α(IPF)=0.000263 24 Mult.: from γ(θ) in (n,n'γ) and Jπ's of relevant levels. δ: from 1989GoZK.
		1637.43 6	36.8 22	1248.5811	4+				
		2283.19 9	100.0 <i>14</i>	602.7271	2+	E1+M2	+0.06 2	9.45×10 ⁻⁴	$\begin{split} &\alpha({\rm K}){=}0.0001342\ 22;\ \alpha({\rm L}){=}1.57{\times}10^{-5}\ 3;\\ &\alpha({\rm M}){=}3.10{\times}10^{-6}\ 6;\ \alpha({\rm N}{+}){=}0.000792\ 12\\ &\alpha({\rm N}){=}6.14{\times}10^{-7}\ 11;\ \alpha({\rm O}){=}6.74{\times}10^{-8}\ 12;\\ &\alpha({\rm IPF}){=}0.000791\ 12\\ \end{split}$ Mult.: from $\gamma(\theta)$ in $({\rm n},{\rm n}'\gamma)$ and $\alpha({\rm K}){\rm exp}$ in ${}^{124}{\rm I}\ \varepsilon$ decay.
									δ : from 1989GoZK.
2897.3	1,2+	2897.3	100	0.0	0^+	D			E_{γ} : from $(\gamma, \gamma), (\gamma, \gamma')$.
2902.71	(5)	1654.12 3	100	1248.5811	4	D			Mult.: from $\gamma(\theta)$ in $(\alpha, 2n\gamma)$.
2911.180	()	561.716 11	100 3	2349.465	6'	D			Mult.: from $\gamma(\theta)$ in $(\alpha, 2n\gamma)$.
		5/0.14/15	99.4 19	2335.030	Э 6+	Q			Mult.: from $\gamma(\theta)$ in $(\alpha, 2n\gamma)$.
2020 60	(2, 4)	1104.25 J 585 71 18	58.0 <i>15</i>	1/40.958	5-	D			Mult.: from $\gamma(\theta)$ in $(\alpha, 2n\gamma)$.
2920.09	(3,4)	505.71 10 626.87 12	100.6	2333.030	3 2-				
		1672 11 1	100 60	12/18 5811	5 ∕1+	(D)			Mult : from $\alpha(\theta)$ in $(\alpha/2n\alpha)$
2933 77	6	598 73 6	33 3	2335 030		(D) D			L : from $(\alpha 2n\alpha)$
2755.11	0	570.75 0	55 5	2555.050	5	D			Mult: from $\gamma(\theta)$ in $(\alpha, 2n\gamma)$.
		974.7 <i>4</i>	62	1957.902	4+				I_{γ} : from (α .2n γ) and intensity ratio in (n. γ).
		1186.91 11	100 4	1746.958	6+	D			I_{γ} : from $(\alpha, 2n\gamma)$. Mult.: from $\gamma(\theta)$ in $(\alpha, 2n\gamma)$.
2945.59	2^{+}	491.58 11	54.6 16	2454.069	2^{+}				
		792.8 4	36.4 18	2153.29	0^{+}				
		853.99 <i>13</i>	55 <i>3</i>	2091.603	2^{+}				
		906.11 ^f 12	64 ^f 19	2039.421	2^{+}				
		906.11 ^f 12	18 5 12	2039.293	3+				
		1063.06 16	27 4	1882.92	0^{+}				
		1697.1 12	27 15	1248.5811	4+				
		2945.44 14	100 36	0.0	0^{+}				

 $^{124}_{52} Te_{72}\text{--}21$

From ENSDF

$\gamma(^{124}\text{Te})$ (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	$I_{\gamma}^{@}$	E_f	\mathbf{J}_f^{π}	Mult. ^a	$\delta^{\boldsymbol{b}}$	Comments
2947.72	0^{+} to 3^{+}	2344.97 12	100	602.7271	2+			
2954.249	6	280.49 3	15.0 16	2673.771	$7^{(-)}$	D+O	+0.13 3	Mult., δ : from $\gamma(\theta)$ in $(\alpha, 2n\gamma)$.
		470.863 22	61 8	2483.362	4+	C C		
		619.230 20	100 4	2335.030	5-	D+O	-0.15 5	Mult δ : from $\gamma(\theta)$ in $(\alpha, 2n\gamma)$.
		1207.7 4	67 <i>3</i>	1746.958	6+			
2957.55	3-,4+	622.32 16	5.6 6	2335.030	5-			
		664.13 22	13.9 4	2293.711	3-			
		999.70 <i>16</i>	11.1 6	1957.902	4+			
		1708.87 10	100.0 19	1248.5811	4+			
		2355.01 16	22 3	602.7271	2^{+}			
2963.1	0^{+} to 3^{+}	2360.3 7	100	602.7271	2^{+}			
2965.18	(7-)	615.66 4	100 5	2349.465	6+	(D)		Mult.: from $\gamma(\theta)$ in $(\alpha, 2n\gamma)$.
		630.18 <i>3</i>	72.7 17	2335.030	5-	(Q)		Mult.: from $\gamma(\theta)$ in $(\alpha, 2n\gamma)$.
2966.98	(5,6)	1220.02 5	100	1746.958	6+	(D)		Mult.: from $\gamma(\theta)$ in $(\alpha, 2n\gamma)$.
2973.256	(5,6)	134.19 4	11.4 20	2839.039	6	(D)		Mult.: from $\gamma(\theta)$ in $(\alpha, 2n\gamma)$.
		299.52 <i>3</i>	100 4	2673.771	7(-)			
		1226.22 5	81 6	1746.958	6+			
2975.48	1	821.7 4	2.6 7	2153.29	0^{+}			
		1317.8 8	5.2 14	1657.283	0^{+}			
		1650.4 3	3.9 7	1325.5131	2+			
		2372.71 16	26.0 23	602.7271	2+			
0000 51	a+ a+	2975.21 22	100 9	0.0	0^+			
2982.71	21,31	891.1.5	16.0 10	2091.603	21			
		1024.2 4	8 2	1957.902	4' 2+			
		1657.11 10	100 2	1325.5131	2 · 4 +			
		1/34.3 3	40 4	1248.3811	4 · 2+			
2086 70	(5.6)	2360.33 20	100 12	1248 5811	2 · 4+			
2980.70	(3,0) 1.2 ⁺	604.6.5	0.0.5	2203 711	4			
2900.24	1,2	1105 31 17	3 57 21	1882.02	0+			
		1330.4.5	8915	1657 283	0+			
		1662 94 15	985	1325 5131	2^{+}			
		2385 20 13	100.0.9	602 7271	$\frac{2}{2^{+}}$			
		2987.91 23	39.5	0.0	0^{+}			
3001.12	2+.3	166.04 24	73	2834.898	3-			
0001112	- ,0	307.35 8	13.5 22	2693.679	3-			
		517.85 7	23.3 19	2483.362	4+			
		546.99 14	12.5 13	2454.069	2^{+}			
		677.6 5	31.3 13	2322.95	2^{+}			
		707.46 8	81.6 22	2293.711	3-			
		776.17 26	11.0 8	2224.954	4+			
		961.80 9	16 <i>3</i>	2039.293	3+			

 $^{124}_{52}$ Te₇₂-22

$\gamma(^{124}\text{Te})$ (continued)

E _i (level)	\mathbf{J}_i^{π}	${\rm E_{\gamma}}^{\dagger}$	Ι _γ @	E_f	\mathbf{J}_f^{π}	Mult. ^a	δ^{b}	Comments
3001.12	2+,3	1042.7 <i>10</i> 1675.58 <i>5</i>	12.5 25 100.0 18	1957.902 1325.5131	$\frac{4^{+}}{2^{+}}$			
3032 839	7	1/52.42 14	$\frac{51}{1323}$	1248.5811 2911 180	$\frac{4}{7}(-)$	D		Mult : from $\gamma(\theta)$ in $(\alpha 2n\gamma)$
5052.057	1	359.070 15	100 3	2673.771	7 ⁽⁻⁾	D+Q	-0.16 7	Mult., δ : from $\gamma(\theta)$ in $(\alpha, 2n\gamma)$.
		368.38 <i>3</i>	5.6 6	2664.43	8+	(D)		Mult.: from $\gamma(\theta)$ in $(\alpha, 2n\gamma)$.
3038.29	8(+)	373.851 13	100.0 17	2664.43	8+	D+Q	-0.18 2	Mult., δ : from $\gamma(\theta)$ in $(\alpha, 2n\gamma)$.
2020.0	0^{+} to 2^{+}	1291.33 10	14.2 20	1/46.958	6' 2+	Q		Mult.: from $\gamma(\theta)$ in $(\alpha, 2n\gamma)$.
3039.9	0^{+} to 5^{+}	2437.1 12	62 25	002.7271	2+ 2+			
5045.57	2	722.8 5	15 0 5	2322.93	2 3-			
		892.2.5	3 3 22	2153.29	0+			
		953.66.16	504	2091.603	2^{+}			
		1005.80^{f} 13	5.0^{f} 13	2039.421	- 2+			
		$1005 \ 80f \ 13$	$6.7f_{12}$	2039 293	3+			
		2442.74.10	100.0.10	602 7271	2^{+}			
3048.9	1.2^{+}	895.4.3	29.9	2153.29	$\tilde{0}^{+}$			
201012	-,=	2446.9 6	100 57	602.7271	2 ⁺			
3054.62	$3^{-}.4^{+}$	719.6 4	59 12	2335.030	5-			
	- ,	760.90 21	17.7 24	2293.711	3-			
		963.45 21	29.4 24	2091.603	2^{+}			
		1014.8 4	18 <i>3</i>	2039.293	3+			
		1096.67 16	23.5 14	1957.902	4+			
		1729.1 <i>3</i>	100.0 24	1325.5131	2^{+}			
		1805.78 23	59 18	1248.5811	4^{+}			
3056.50	$2^+, 3, 4^+$	1731.1 11	16 8	1325.5131	2^{+}			
		1807.3 <i>3</i>	29 6	1248.5811	4+			
	(.)	2453.81 10	100.0 21	602.7271	2+			
3069.27	6(+)	1111.33 10	88 10	1957.902	4+	(Q)		Mult.: from $\gamma(\theta)$ in $(\alpha, 2n\gamma)$.
	a + <+	1322.6 3	100 20	1746.958	6+	D		Mult.: from $\gamma(\theta)$ in $(\alpha, 2n\gamma)$.
3082.77	2^+ to 6^+	1834.17 10	100	1248.5811	4+			
3088.57	21	567.24 10	54.6 11	2521.33	21			
		634.42 20 765 9 4	18.2 15	2454.069	2.			
		/05.8 4	18 12	2322.95	2+			
		990.9 J	3022	2091.003	2			
		1049.18 20	215 9	2039.293	3+			I_{γ} : from authors' table II, 0.070 7 in authors' table I probably corresponds to total intensity for the doublet. Uncertainty is assigned by compilers.
		1049.18 ^{<i>f</i>} 20	36 ^{<i>f</i>} 9	2039.421	2+			I_{γ} : from authors' table II, 0.070 7 in authors' table I probably corresponds to total intensity for the doublet. Uncertainty is assigned by compilers.

23

$^{124}_{52}$ Te₇₂-23

From ENSDF

$\gamma(^{124}\text{Te})$ (continued)

E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	$I_{\gamma}^{@}$	E_f	\mathbf{J}_f^{π}	Mult. ^a	$\delta^{\boldsymbol{b}}$	Comments
3088.57	2+	1205.63 16	45 27	1882.92	0^{+}			
	_	1431.8 5	100 17	1657.283	0^{+}			
		1840.1 4	72 15	1248.5811	4+			
3091.86	1.2^{+}	782.3 6	1.7 4	2308.42	0^{+}			
		1766.27 12	22.4 9	1325.5131	2^{+}			
		2488.2 5	28 <i>3</i>	602.7271	2+			
		3091.96 11	100.0 21	0.0	0^{+}			
3095.07	1^{-} to 4^{+}	401.29 22	19.1 6	2693.679	3-			
		1003.3 5	7.1 7	2091.603	2^{+}			
		1769.53 10	78.6 7	1325.5131	2^{+}			
		2492.14 12	100 4	602.7271	2+			
3100.67	$1,2^{+}$	112.430 19	3.3 12	2988.24	$1,2^{+}$			
		353.58 4	100.0 9	2747.04	$1^{(-)}$			
		399.50 16	0.89 7	2701.61	2-			
		499.92 13	2.38 9	2600.95	1+			
		918.40 22	1.2 9	2182.41	2+			
		2499.0 10	1.2 5	602.7271	2+			
2105 (0	at a 1t	3101.7 5	1.8 3	0.0	0^{+}			
3107.60	2,3,4	813.63	5.310	2293.711	3			
		1068.25 ^J 13	5/3	2039.421	2+			
		1068.25 [†] 13	47 5 16	2039.293	3+			
		1149.7 <i>4</i>	11 3	1957.902	4+			
		1782.02 11	74 <i>3</i>	1325.5131	2+			
		2505.01 14	100 7	602.7271	2+			
3109.38	2+,3,4-	407.9 6	11.1 11	2701.61	2-			
		1152.5 4	11.1 22	1957.902	4			
2110.52	2+ 2+	1860.70 11	100.0 22	1248.5811	4' 2 ⁺			
3118.32	2,3	1/92.99 21	15.8 18	1323.3131	2 · 4+			
		1609.5 J 2515.00.22	3.5 10	602 7271	4 · 2+			
2126 76	o(+)	472 222 24	100 4	2664 42	2 0+		0 12 2	Mult be from $e(0)$ in (a law)
5150.70	0	472.333 24	100 9	2004.45	o 6 ⁺	D+Q O	-0.12 3	Mult: from $\gamma(\theta)$ in $(\alpha, 2n\gamma)$.
3143 22	0^{+} to 3^{+}	1817 75 13	32.0.20	1325 5131	2^+	Q		where $\gamma(0)$ in $(\alpha, 2\pi\gamma)$.
5175.22	0 10 5	2540 32 21	100.12	602 7271	$\frac{2}{2^{+}}$			
3154 37	$10^{(+)}$	489 930 11	100 12	2664 43	- 8 ⁺	0		Mult : from $\gamma(\theta)$ in $(\alpha 2n\gamma)$
3162.92	$2^+.3.4^+$	869.1 4	29.9	2293.711	3-	×		
0102.72	- ,2,1	1837.7 3	50 6	1325.5131	2+			
		1914.2 3	100 16	1248.5811	<u>4</u> +			
3167.94	$2^+, 3, 4^+$	392.93 14	18.8 6	2774.968	3-,4-			
	, ,	874.41 14	9.4 5	2293.711	3-			
		1842.24 14	100 5	1325.5131	2+			
					_			

24

$\gamma(^{124}\text{Te})$ (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	$I_{\gamma}^{@}$	E_f	\mathbf{J}_f^{π}	Mult. ^a	Comments
3167.94	$2^+.3.4^+$	1920.2.8	64	1248.5811	4+		
3210.9	2^+ to 6^+	1962.3 4	100	1248.5811	4 ⁺		
3212.23	$1^{-}.2^{+}$	465.20.13	3.6.3	2747.04	1(-)		
0212120	- ,=	918.50.22	6.3	2293.711	3-		
		1886.52 19	14.3.9	1325.5131	2^{+}		
		2609.40 10	100.0 10	602.7271	2^{+}		
		3212.75 22	7.16	0.0	0^{+}		
3217.60	2+	923.48 21	24.0 20	2293.711	3-		
		1178.3 7	20.0 24	2039.293	3+		
		1259.5 5	16 <i>6</i>	1957.902	4+		
		1893.6 10	68 16	1325.5131	2^{+}		
		2615.21 17	100 20	602.7271	2+		
		3217.35 21	32 <i>3</i>	0.0	0^{+}		
3220.50	2+	926.4 5	5.5 24	2293.711	3-		
		1180.86 ^{<i>f</i>} 15	$9^{f}_{f}_{f}$	2039.421	2+		
		1180.86 ^J 15	9.1 ^J 24	2039.293	3+		
		1895.14 21	16 7	1325.5131	2+		I_{γ} : from (n, γ) E=thermal.
		1972.97	3.6 15	1248.5811	4'		
		2617.80 21	100 /	602.7271	2		I_{γ} : from (n,γ) E=thermal.
2225 4	0^+ to 4^+	3221.03 10	92.7 10	602 7271	2^+		I_{γ} . Iron (n, γ) E=merman.
3233.4	1 2+	1355 10 <i>14</i>	23 13	1882.92			
5250.24	1,2	2635 67 12	100 3	602.72	2^{+}		
		3238.15 14	79.7 16	0.0	$\tilde{0}^{+}$		
3240.88	$2^+.3.4^+$	1914.8 5	31 15	1325.5131	2^{+}		
	,- ,	1992.39 22	100 31	1248.5811	4+		
3257.98	$2^+, 3, 4^+$	1166.4 7	26 12	2091.603	2^{+}		
		1218.77 ^{<i>f</i>} 19	16 ^{<i>f</i>} 9	2039.421	2^{+}		
		1218.77 ^ƒ 19	$11^{f} 4$	2039.293	3+		
		1932.33 15	100 7	1325.5131	2+		
		2008.9 4	16 8	1248.5811	4^{+}		
3260.84	(6)	380.509 15	100	2880.33	$5^{(+)}$		
3272.299	8	361.135 ^d 18	52.2 20	2911.180	$7^{(-)}$	D	Mult.: from $\gamma(\theta)$ in $(\alpha, 2n\gamma)$.
		433.08 15	3.7 15	2839.039	6		
		607.72 7	100 4	2664.373	6	Q	Mult.: from $\gamma(\theta)$ in $(\alpha, 2n\gamma)$.
3279.94	2+,3,4+	1240.51 ^J 11	14 ^J 14	2039.421	2+		
		1240.51 ^J 11	43 ^J 10	2039.293	3+		
		1323.5 6	57 21	1957.902	4+ 2+		
2284.22	2+	2677.25 12	100 4	602.7271	2*		
3284.22	2*	990.38 13	55 22	2293./11	3-		

25

$\gamma(^{124}\text{Te})$ (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	Ι _γ @	E_f	J_f^π	Mult. ^a	$\delta^{\boldsymbol{b}}$	Comments
3284.22	2+	1130.4 3	9.1 15	2153.29	0^{+}			
		1244.85 ^f 11	18 5 9	2039.421	2+			
		1244.85f 11	81 <i>f</i> 12	2030 203	- 3+			
		1958 90 12	100 3	1325 5131	2+			
3288.91	1.2^{+}	1963.43 10	100.0 10	1325.5131	2+			
0200001	-,=	2685.84 22	48 3	602.7271	$\frac{1}{2^{+}}$			
		3289.1 5	13 5	0.0	0^{+}			
3290.763	9(-)	258.01 9	5.3 4	3032.839	7			
		617.03 <i>3</i>	100.0 18	2673.771	$7^{(-)}$	0		Mult.: from $\gamma(\theta)$ in $(\alpha, 2n\gamma)$.
3302.0	$1,2^{+}$	3302.0	100	0.0	0^{+}			E_{γ} : from $(\gamma, \gamma), (\gamma, \gamma')$.
3307.37	7	468.40 6	54 10	2839.039	6			
		1560.25 9	100 5	1746.958	6+			
3308.5	2^{+} to 6^{+}	2059.9 5	100	1248.5811	4+			
3318.98	0^{+} to 4^{+}	864.89 20	29 <i>3</i>	2454.069	2+			
		1993.46 22	100 29	1325.5131	2+			
3336.22	8	662.45 <i>3</i>	100	2673.771	7(-)	D+Q	-2.73 4	Mult., δ : from $\gamma(\theta)$ in $(\alpha, 2n\gamma)$.
3336.51	$2^+, 3^+, 4^+$	2010.88 20	46 6	1325.5131	2+			
	1 a b	2087.98 17	100 7	1248.5811	4+			
3348.68	1,2+	242.6 8	3.3 17	3107.60	2+,3,4+			
		2022.8 3	43 4	1325.5131	2' 0 ⁺			
2250 059	O(-)	5549.0 J	100.0 20	0.0	$\frac{0}{7(-)}$	0		Malta from a(0) in (a 2ma)
3330.938	9^{+}	0//.185 I0	100	20/3.//1	/ · /	Q		Mult.: from $\gamma(\theta)$ in $(\alpha, 2n\gamma)$.
2265 42	2 10 0	2100.0 J	100	1240.3011	$\frac{4}{c(+)}$	(\mathbf{D})		Mult from $u(0)$ in $(a, 2ma)$
2267.09	(7)	027.33 4	10.0 12	2157.90	10(+)	(D)		Mult.: from $\gamma(\theta)$ in $(\alpha, 2\pi\gamma)$.
5507.98	9	215.000 15	19.9 12	2664.37	10 9+	D D		Mult: from $\gamma(\theta)$ in $(\alpha, 2n\gamma)$. Mult: from $\gamma(\theta)$ in $(\alpha, 2n\gamma)$
2270 15	0	221.96 /	100.0 21	2004.45	o o(+)	D		Mult: from $y(0)$ in $(\alpha, 2n_2)$.
3370.13	0^+ to 4^+	2767 60 12	100	5056.29	0 2+	D		Mult from $\gamma(\theta)$ in $(\alpha, 2\pi\gamma)$.
3382 932	(7)	1635 962 14	100	1746 958	$\frac{2}{6^{+}}$			
3393.63	$1^+ 2^+$	910 7 5	7415	2483 362	4^+			
5575.05	1,2	940.0 10	19.6	2454.069	2+			
		1301.5 5	100.0 11	2091.603	$\bar{2}^{+}$			
		1353.4 4	37 5	2039.293	3+			
		2068.0 5	44 11	1325.5131	2+			
		2789.8 6	85 <i>5</i>	602.7271	2+			
		3393.81 16	70 5	0.0	0^{+}			
3399.67	$2^+, 3^+$	916.1 <i>3</i>	7.7 10	2483.362	4+			
		1308.43 19	7.7 8	2091.603	2+			
		2074.20 23	23.1 18	1325.5131	2+			
2 400 0 f	0	2796.80 11	100 4	602.7271	2+	P		
3409.04	9	744.61 3	100	2664.43	8+	D		Mult.: from $\gamma(\theta)$ in $(\alpha, 2n\gamma)$.

$\gamma(^{124}\text{Te})$ (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	$I_{\gamma}^{@}$	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult. ^a	Comments
3422.60	6 ⁽⁺⁾	758 16 3	100	2664.43 8+	0	Mult : from $\gamma(\theta)$ in $(\alpha 2n\gamma)$
3430.04	$1^{-}2.3^{+}$	454 46 16	33.4	2975.48 1	×	
5150.01	1,2,5	1136.9.6	50.5	$2293.711 3^{-1}$		
		1339.0.5	100 12	2091 603 2+		
3438.70	0^{+} to 4^{+}	2835.94 21	100	602.7271 2+		
3443.05	1.2^{+}	162.9.3	2.3 11	3279.94 2+.3.4+		
	- ,—	741.25 15	13.6 9	2701.61 2-		
		921.5 3	9.1 16	2521.33 2+		
		1560.34 11	34.1 7	1882.92 0+		
		2840.21 10	100.0 21	602.7271 2+		
		3443.01 15	50 <i>3</i>	$0.0 0^+$		
3444.03	(5,6)	411.186 24	100	3032.839 7		
3450.78	$1^{-},2^{+}$	449.37 22	16.7 5	3001.12 2+,3		
		749.4 9	64	2701.61 2-		
		1157.11 16	16.7 <i>11</i>	2293.711 3-		
		2125.17 22	31 11	1325.5131 2+		
		2848.13 16	100 11	602.7271 2+		
		3451.2 6	11 7	$0.0 0^+$		
3452.69	(6)	1117.653 24	100	2335.030 5-		
3456.61	$2^+, 3, 4^+$	2208.5 4	43 19	1248.5811 4+		
		2853.80 13	100 4	602.7271 2+		
3460.35	$1,2^{+}$	2134.78 21	100 10	1325.5131 2+		
		3460.8 8	38 23	0.0 0+		
3474.64	0^+ to 4^+	2871.88 12	100	602.7271 2+		
3475.54	(6,7)	502.20 11	33.8	2973.256 (5,6)		
		1728.63 10	100 8	1746.958 6+	(D)	Mult.: from $\gamma(\theta)$ in $(\alpha, 2n\gamma)$.
3479.37	0^{-1} to 3^{-1}	696.06 18	44 4	2/83.21 1+,2+		
		1026.1 3	44 4	2454.069 2+		
		2153.77 14	78 7	1325.5131 2+		
2470 56	$c(\pm)$	28/6.56 14	100 /	$602.7271 2^{\circ}$	0	
3479.56	$6^{(+)}$	815.12 3	100	2664.43 8+	Q	Mult.: from $\gamma(\theta)$ in $(\alpha, 2n\gamma)$.
3487.16	1,2*	2884.1 3	55 10	602.7271 2		
2400.25	0+ 4 2+	348/.4 3	100 4	$0.0 0^{+}$		
3490.25	0° to 3°	889.06 15	24.5 18	2600.95 1 ⁺		
2407 54	2^{+} to 6^{+}	2887.70 14	100.0	$002.7271 - 2^{\circ}$		
3497.34	∠' 10 0' 5.6.7	2248.94 23 1766 47 10	100	1248.3811 4	D	Mult: from $\alpha(0)$ in (α) inc.
2526 602	J,U, /	1/00.4/ 10	100	1/40.936 0 2672.771 7(-)	D	When $\gamma(\sigma)$ in $(\ell^{2}, 2\pi\gamma)$.
3526.692	$(/, \delta)$ 1 = 2+	852.918 19	100	20/3.//1 / 7		
3330.04	1 ,2	1230.23 21	10.0 11	2293.111 3 1225 5121 2 ⁺		
		2203.0 J 2027.01.16	139	1323.3131 2 $602.7271 2^+$		
		2721.01 10	100 10	002.1211 2		

27

 $^{124}_{52}$ Te₇₂-27

$\gamma(^{124}\text{Te})$ (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	$I_{\gamma}^{@}$	E_f	J_f^π	Mult. ^a	$\delta^{\boldsymbol{b}}$	Comments
3530.04	$1^{-}.2^{+}$	3530.19 14	45 9	0.0	0^{+}			I_{ν} : from (n, γ) E=thermal.
3537.68	$1,2^{+}$	2934.92 14	100 6	602.7271	2+			
		3536.9 15	38 7	0.0	0^{+}			
3543.09	$1^{-},2^{+}$	380.3 <i>3</i>	2.0 3	3162.92	$2^+, 3, 4^+$			
		842.0 4	2.0 5	2701.61	2^{-}			
		1248.3 6	12.00 24	2293.711	3-			
		2940.27 11	57.0 11	602.7271	2+			
	(.)	3543.20 22	100 15	0.0	0+			
3550.00	$10^{(+)}$	395.641 14	46.1 13	3154.37	$10^{(+)}$	D+Q	-0.34 3	Mult., δ : from $\gamma(\theta)$ in $(\alpha, 2n\gamma)$.
		885.53 <i>3</i>	100.0 18	2664.43	8+	Q		Mult.: from $\gamma(\theta)$ in $(\alpha, 2n\gamma)$.
3554.45	7	1807.48 10	100	1746.958	6^+	D		Mult.: from $\gamma(\theta)$ in $(\alpha, 2n\gamma)$.
3576.03	2+,3+,4+	1280.8 8	50 3	2293.711	3-			
		1484.5 3	70 40	2091.603	2			
		2328.2 0	40 24	1248.3811	4 · 2+			
3588 3	0^+ to 4^+	2975.2 5	100 90	602.7271	$\frac{2}{2^{+}}$			
3508.075	$0^{(-)}$	180.07.7	12.1.8	3400.04	0	(D)		Mult : from $\alpha(\theta)$ in $(\alpha 2n\alpha)$
5576.775	2	687 702 15	12.1 0	2011 180	$\frac{2}{7(-)}$	(D) 0		Mult: from $\alpha(\theta)$ in $(\alpha, 2n_{\theta})$.
3500 3	2+ 3 4+	2350 6 4	56 13	1248 5811	Δ+	Q		Mult from $\gamma(0)$ in $(\alpha, 2n\gamma)$.
5577.5	2,3,4	2996.6.4	100 18	602 7271	2+			
3622.07	$1^{-}.2^{+}$	735.71 12	23.1 12	2886.05	3-			
	- ,-	1469.0 7	35 9	2153.29	0^{+}			
		2296.53 14	38.5 27	1325.5131	2+			
		3019.59 12	100 12	602.7271	2^{+}			
		3623.0 7	19 12	0.0	0^{+}			
3628.53	1,2+	1745.38 18	19.4 <i>16</i>	1882.92	0^{+}			
		2303.11 21	19 4	1325.5131	2+			
		3025.82 12	100 6	602.7271	2+			
2(52.12	(7)	3629.0 10	16 10	0.0	0^+			
3652.13	(/)	//8.59 3	100	28/3.53	/ 0 ⁺			
3052.81	1,2	1498.3 0	8.1 22	2155.29	0' 2+			
		2327.32 17	48 0	1323.3131	$\frac{2}{2^+}$			
3654 4	2^{+}	1562.8.5	100 5	2001.603	$\frac{2}{2^+}$			
5054.4	2	2405 6 8	33 18	1248 5811	$\frac{2}{4^+}$			
		3051 4 10	83 50	602 7271	2+			
		3655.0 10	83 50	0.0	0^{+}			
3662.00	$2^+, 3, 4^+$	2413.5 4	38 10	1248.5811	4+			
		3059.22 13	100 4	602.7271	2+			
3666.90	1 ⁺ to 3 ⁺	1574.3 6	22 11	2091.603	2+			
		1626.5 6	38.9 22	2039.293	3+			

From ENSDF

$\gamma(^{124}\text{Te})$ (continued)

E _i (level)	\mathbf{J}_i^π	E_{γ}^{\dagger}	$I_{\gamma}^{@}$	E_f	\mathbf{J}_{f}^{π}	Mult. ^a	$\delta^{\boldsymbol{b}}$	Comments
3666.90	1 ⁺ to 3 ⁺	2341.35 15	100 7	1325.5131	$\frac{2^{+}}{2^{+}}$			
3685 70	0^{+} to 4^{+}	5004.20 <i>14</i> 1594 7 5	30 3 24 14	2001 603	$\frac{2}{2^+}$			
5005.70	0 10 4	3082.89 13	100.5	602.7271	$\frac{2}{2^{+}}$			
3703.487	8	352.51.7	20.5 15	3350.958	q (-)	D		Mult: from $\gamma(\theta)$ in $(\alpha, 2n\gamma)$.
5705.107	0	412.76.3	41 0 22	3290 763	q (-)	D+0	+192	Mult δ : from $\gamma(\theta)$ in $(\alpha, 2n\gamma)$
		670.628.22	100.3	3032.839	7	D+Q D+O	+0.40.3	Mult., δ : from $\gamma(\theta)$ in $(\alpha, 2n\gamma)$.
3709.72	2+	1008.24 16	13.8 10	2701.61	2-	2.4		
	_	1108.5 3	6.9 8	2600.95	1+			
		1386.6 4	3.5 17	2322.95	2+			
		1415.90 10	55.2 10	2293.711	3-			
		1670.8 <i>10</i>	28 14	2039.293	3+			
		3107.22 22	100.0 21	602.7271	2+			
		3710.5 6	17 8	0.0	0^{+}			
3713.99	(8,9)	1049.55 6	100	2664.43	8+			
3723.63	2+,3,4+	2397.5 5	40 5	1325.5131	2+			
2755 65	1.0+	2475.08 16	100 9	1248.5811	4 ⁺			
3/55.65	1,2	654.80 10	9.09.18	3100.67	1,2			
		000.51 15	3.9 5	3095.07	1 to 4'			
		/0/.48 1/	15.0 10	2988.24	$1,2^{+}$ 1 ⁺ to 4 ⁺			
		1154 65 21	5.94 787	2600.95	1 10 4 1 ⁺			
		1447 8 5	53	2308.42	0^{+}			
		2098.62 14	52 3	1657.283	0^{+}			
		3152.93 12	100 6	602.7271	2+			
		3756.0 6	94	0.0	0^{+}			
3774.1	$1,2^{+}$	1681.0 10	98	2091.603	2+			
		2448.2 10	100 3	1325.5131	2+			
		3172.0 10	23 14	602.7271	2+			
		3775.4 10	23 18	0.0	0^{+}			
3805.40	0^+ to 3^+	2479.86 15	100	1325.5131	2+ 2+			
3810.07	0^+ to 3^+	3207.30 11	100	602.7271	2 ⁺			
3836.46	(9)	1172.02 9	100	2664.43	8 -	(D)		Mult.: from $\gamma(\theta)$ in $(\alpha, 2n\gamma)$.
3845.22	ð 11	812.38 10	100	3032.839	/ 10(+)	ע ח		Multi: from $\gamma(\theta)$ in $(\alpha, 2n\gamma)$.
3830.34	$11 \\ 0^+ t_2 2^+$	090.1/4	100	3134.37	10(1) 2+	D		Mult.: from $\gamma(\theta)$ in $(\alpha, 2n\gamma)$.
3853.37 3862.6	0^{+} to 3^{+}	5250.80 13 1770 5 5	67 40	2001 602	2+ 2+			
3002.0	0 10 3	2537 3 5	100 67	2091.005	$\frac{2}{2^+}$			
		3260.0.4	67 40	602 7271	$\frac{2}{2}$ +			
3872 32	(9.10)	834 03 4	100	3038 29	2 8 ⁽⁺⁾			
3880.20	1,2+	2554.77 20	58 5	1325.5131	2^{+}			

29

 $^{124}_{52}$ Te₇₂-29

$\gamma(^{124}\text{Te})$ (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	$I_{\gamma}^{@}$	E_f J	J_f^{π} 1	Mult. ^a	$\delta^{\boldsymbol{b}}$	Comments
3880.20	1.2+	3879.9.3	100 10	0.0 0)+			
3884.87	$1,2^+$	1183.27 16	37.5 25	2701.61 2	_			
	,	3282.13 16	75 5	602.7271 2	+			
		3884.69 25	100 12	0.0 0)+			
3904.12	0^{+} to 3^{+}	3301.35 16	100	602.7271 2	+			
3929.47	1,2+	2045.6 6	23 9	1882.92 0)+			
		2603.6 10	46 23	1325.5131 2	+			
		3326.74 12	100 6	602.7271 2	2+			
		3929.2 10	46 23	0.0 0)+			
3931.57	10	580.608 22	100 8	3350.958 9)(-) I	D+Q	-0.51 1	Mult., δ : from $\gamma(\theta)$ in $(\alpha, 2n\gamma)$.
		640.84 8	95 10	3290.763 9)(-) ((D)		Mult.: from $\gamma(\theta)$ in $(\alpha, 2n\gamma)$.
3945.22	$1,2^{+}$	2287.91 <i>21</i>	100	1657.283 0)+			
3946.40	1,2+	3343.61 19	60 5	602.7271 2	2+			
		3946.4 <i>4</i>	100 50	0.0 0)+			
3967.34	$1^{-},2^{+}$	1272.4 5	57.9 <i>21</i>	2693.679 3	-			
		1645.9 9	54	2322.95 2	+			
		2311.2 9	11 3	1657.283 0)+ +			
		2641.60 22	79 42	1325.5131 2	, , ,			
		3364.8 5	100 42	602.7271 2	,			
2004 50		3967.73	84 20	0.0 0)' (_)			
3984.78	(8)	633.82 9	100	3350.958 9	(-) (_)			
3988.593	11(-)	637.96 9		3350.958 9	(-)			E_{γ} : The uncertainty of the weighted average γ energies was too small, the evaluator assumed an uncertainty of 3 times of that.
		697.826.5	100 4	3290.763 9	(-)	0		Mult.: from $\gamma(\theta)$ in $(\alpha.2n\gamma)$.
3989.1	0^{+} to 3^{+}	2664.8 15	60 7	1325.5131 2	+	× .		
		3385.7 10	100 14	602.7271 2	+			
3996.33	0^{+} to 4^{+}	2670.79 14	100	1325.5131 2	+			
3998.3	1,2+	3395.7 10	71 60	602.7271 2	+			
		3998.2 <i>5</i>	100 60	0.0 0)+			
4010.8	$1,2^{+}$	1920.0 5	60 <i>30</i>	2091.603 2	+			
		2352.6 9	80 50	1657.283 0)+			
		4009.9 6	100 40	0.0 0)+			
4030.3	0^{+} to 3^{+}	3427.5 <i>3</i>	100	602.7271 2	+			
4032.76	$11^{(-)}$	681.72 <i>4</i>	100 6	3350.958 9)(-)			
		742.16 4	72 3	3290.763 9)(-) (Q		E_{γ} : The uncertainty of the energy seems to be too small comparing with the energy difference of corresponding levels. The evaluator assumed 3 times larger uncertainty than reported one.
1034 42	(10)	135 150 15	100	3508 075 0	(-) т	D		Mult: from $\alpha(\theta)$ in $(\alpha, 2n\alpha)$
4034.43	(10)	433.430 13	100 4	3390.913 9 0747 04 1	(-)	U		$\gamma(0)$ III ($\alpha, 2\Pi\gamma$).
4043.80	0.10.3	1290.72 13	100 4	2/4/.04 I 1225 5121 2	+			
		2/19.0 0	14 /	1525.5151 2				

30

$\gamma(^{124}\text{Te})$ (continued)

E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	Ι _γ @	E_f	J_f^π	Mult. ^a	Comments
4051.40 4051.51	$11 \\ 0^+ \text{ to } 3^+$	897.03 <i>4</i> 956.31 <i>25</i> 3448.77 <i>13</i>	100 8.7 <i>13</i> 100 <i>13</i>	3154.37 3095.07 602.7271	$10^{(+)}$ 1^{-} to 4^{+} 2^{+} 2^{+}	D	Mult.: from $\gamma(\theta)$ in $(\alpha, 2n\gamma)$.
4090.23	1,2 ⁺	3487.2 <i>3</i> 4090.24 <i>17</i>	92 <i>4</i> 100 <i>9</i>	602.7271 602.7271 0.0	2+ 2+ 0+		E_{γ}, I_{γ} : from (n, γ) E=thermal.
4099.2	0 ⁺ to 3 ⁺	2006.8 <i>9</i> 3496.6 <i>4</i>	80 <i>20</i> 100 <i>26</i>	2091.603 602.7271	2+ 2+		
4114.08 4114.37 4118.1	(9,10) 0 ⁺ to 4 ⁺ 1,2 ⁺	1449.639 25 3511.59 <i>13</i> 4118.0	100 100 <i>30</i> 100	2664.43 602.7271 0.0	8+ 2+ 0+	(D)	Mult.: from $\gamma(\theta)$ in $(\alpha, 2n\gamma)$.
4128.1	1,2+	2803.2 7 3525.3 9 4127.8 4	67 <i>33</i> 100 <i>80</i> 50 <i>25</i>	1325.5131 602.7271 0.0	2^+ 2^+ 0^+		
4142.20	2+,3,4+	2049.7 8 2816.7 <i>3</i> 2893.60 <i>14</i>	6 4 38 6 100 3	2091.603 1325.5131 1248.5811	2+ 2+ 4+		
4144.48	0 ⁺ to 3 ⁽⁻⁾	1397.43 <i>16</i> 2053.5 <i>6</i> 2104 9 3	22.7 <i>18</i> 4.6 <i>23</i> 100 <i>23</i>	2747.04 2091.603 2039.421	$1^{(-)}$ 2 ⁺ 2 ⁺		
4146.51	1,2+	2821.14 24 3543.60 22 4145.6 12	27 4 100 40 5 4	1325.5131 602.7271 0.0	2^+ 2^+ 0^+		
4155.38 4170.7	2 ⁺ to 6 ⁺ 1,2 ⁺	2906.76 <i>13</i> 1074.3 <i>9</i> 2845.7 <i>4</i> 3566.8 <i>10</i> 4170.5 <i>5</i>	100 15.4 <i>19</i> 54 <i>30</i> 100 <i>10</i> 69 <i>50</i>	1248.5811 3095.07 1325.5131 602.7271 0.0	4 ⁺ 1 ⁻ to 4 ⁺ 2 ⁺ 2 ⁺ 0 ⁺		
4173.68 4177.79	1,2+	822.72 <i>3</i> 1082.89 <i>24</i> 3574.6 <i>5</i> 4176.3 <i>10</i>	100 75 <i>13</i> 75 <i>30</i> 100 <i>80</i>	3350.958 3095.07 602.7271 0.0	9 ⁽⁻⁾ 1 ⁻ to 4 ⁺ 2 ⁺ 0 ⁺	(D)	Mult.: from $\gamma(\theta)$ in $(\alpha, 2n\gamma)$.
4195.06	1,2	1448.1 <i>3</i> 1493.5 <i>5</i> 1595.0 <i>5</i> 2869.5 <i>7</i> 3591.1 <i>5</i>	71 <i>16</i> 21 <i>11</i> 64 <i>16</i> 36 2 <i>1</i> 100 9	2747.04 2701.61 2600.95 1325.5131 602.7271	$ \begin{array}{c} 1^{(-)} \\ 2^{-} \\ 1^{+} \\ 2^{+} \\ 2^{+} \end{array} $		
4215.4	1,2+	1614.3 5 3613.1 8 4215.2 5	100 6 31 13 69 40	2600.95 602.7271 0.0			
4229.22	1,2+	1134.1 3	10.5 12	3095.07	1^{-} to 4^{+}		

31

 $^{124}_{52}\text{Te}_{72}\text{--}31$

$\gamma(^{124}\text{Te})$ (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	Ι _γ @	E _f	\mathbf{J}_{f}^{π}	Mult. ^a	Comments
4229.22	1,2+	3626.4 6	68 16	602.7271	2+		
1000 00		4229.2 3	100 60	0.0	0^+		
4238.39	0^{+} to 4^{+}	387.855 13	100	3850.54	11 2+	(D)	Mult.: from $\gamma(\theta)$ in $(\alpha, 2n\gamma)$.
4241.0	0^{+} to 3^{+}	2062.8.8	36.5	2182 41	2 2+		
4244.0	0 10 5	2002.8 8	100 78	1325 5131	$\frac{2}{2^{+}}$		
		3642.3.8	18 14	602.7271	$\frac{2}{2^{+}}$		
4270.3	$1,2^{+}$	3665.4 12	100 60	602.7271	2 ⁺		
	,	4270.6 5	100 60	0.0	0^{+}		
4286.07		253.337 23	38.0 21	4032.76	$11^{(-)}$	D	Mult.: from $\gamma(\theta)$ in $(\alpha, 2n\gamma)$.
		297.465 13	100.0 23	3988.593	$11^{(-)}$	D	Mult.: from $\gamma(\theta)$ in $(\alpha, 2n\gamma)$.
4289.40	2+	2963.59 13	67 5	1325.5131	2+		
		3042.0 9	50 15	1248.5811	4+		
		3687.00 18	100 10	602.7271	2^{+}		
		4290.8 10	50 25	0.0	0+		
4302.61	0 to 3^+	2120.18 20	100	2182.41	2+		
4324.4	1,2+	3721.5 3	100 20	602.7271	2+		
4227.4	1.0+	4324.5 5	/3 9	0.0	0'		
4327.4	1,2	3723.9 3	100 50	002.7271	2* 0+		
4375 47	0^{+} to 4^{+}	4328.0 5	100 50	602 7271	0 2 ⁺		
4379.47	0^{+} to 3^{+}	1283.65 25	5.9.9	3095.07	1^{-} to 4^{+}		
1377.17	0 10 5	2195.1 10	24.3	2182.41	2+		
		3053.98 12	76.5 24	1325.5131	2+		E_{γ} : poor fit. Level-energy difference=3053.60.
		3776.96 17	100 9	602.7271	2+		E_{y} : poor fit. Level-energy difference=3776.36.
4415.32	0^{+} to 3^{+}	3812.53 16	100	602.7271	2+		,
4439.4	0^{+} to $3^{(-)}$	1693.0 10	50 25	2747.04	$1^{(-)}$		
		3836.4 5	100 7	602.7271	2+		
4444.8	0^{+} to 3^{+}	3842.0 5	100	602.7271	2+		
4453.7	0^+ to 3^+	3850.9 3	100	602.7271	2+		
4487.3	1,2+	3160.8 10	100 20	1325.5131	2 ⁺		
4501.24	0^{+} to 2^{+}	4487.4 5	86 40	0.0	0' 2+		
4301.24	0 10 5	31/3./1 10	58 20	602 7271	2 2+		
4504 3	0 to 2	1757 3 7	100	2747.04	2 1(-)		
4524 4	0^{+} to 3^{+}	3921.6 3	100	602 7271	2+		
4528.1	0^+ to 3^+	3202.7 3	24 6	1325.5131	2 ⁺		
		3924.5 7	100 50	602.7271	2+		
4551.5	1,2+	4551.4 <i>3</i>	100	0.0	0^{+}		
4568.9	$1,2^{+}$	1967.2 8	37.5 25	2600.95	1^{+}		
		3243.8 5	100 25	1325.5131	2^{+}		

32

$\gamma(^{124}\text{Te})$ (continued)

E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	Ι _γ @	E_{f} J	\mathbf{J}_{f}^{π}	Comments
4568.9	$1,2^{+}$	3966.1 5	44 25	602.7271 2-	+	
	,	4568.8 5	31 25	0.0 0	+	
4580.97	$1,2^{+}$	2489.6 5	26 17	2091.603 2	+	
	,	4580.83 22	100 5	0.0 0	+	
4598.5	$1,2^{+}$	3995.8 <i>3</i>	100 60	602.7271 2	+	
	ŗ	4598.2 5	100 60	0.0 0	+	
4630.1	$1,2^{+}$	4027.8 7	100 50	602.7271 2	+	
		4629.1 10	67 50	0.0 0	+	
4643.46	$1,2^{+}$	2319.2 9	18 15	2322.95 2-	+	
		2551.5 4	45 10	2091.603 2	+	
		3318.2 5	45 8	1325.5131 2	+	
		4042.7 8	100 50	602.7271 2	+	
		4643.2 5	36 30	0.0 0	+	
4698.0	$1,2^{+}$	4094.4 8	100 60	602.7271 2	+	
		4698.5 7	100 50	0.0 0	+	I_{γ} : uncertainty of 0% in table I of 2006Vo09 seems a misprint, compilers assign 50% for a
						weak γ ray.
4701.95	0^{+} to 4^{+}	4099.15 21	100	602.7271 2	+	
4712.90	0^{+} to 3^{+}	4110.10 17	100	602.7271 2	+	
4723.5	0^{+} to 3^{+}	3398.3 5	60 <i>30</i>	1325.5131 2	+	
		4120.4 4	100 30	602.7271 2	+	
4737.28	0^{+} to 4^{+}	3411.72 <i>21</i>	100	1325.5131 2	+	
4739.63	$1,2^{+}$	3413.6 8	16 12	1325.5131 2	+	
		4136.87 15	100 5	602.7271 2	+	
		4739.48 22	72 30	0.0 0	+	
4754.71	1,2+	4152.6 3	100 17	602.7271 2	+	
		4754.28 21	67 6	0.0 0	+	
4764.4	1,2+	1321.0 5	24 6	3443.05 1,	,2+	
		2581.6 5	100.6	2182.41 2	+	
4011.0	o.t	4766.8 9	33 19	0.0 0	т ⊥	
4811.2	0' to 3'	3485.6 15	100	1325.5131 2		
4818.3	0' to 3'	2636.2.5	100 50	2182.41 2		
4002 27	1.0+	3489.8 14	80 80	1325.5131 2	+	
4883.27	1,2	4281.4 5	31 0 100 4	602.7271 2	+	
1000 20	1.0+	4882.99 22	100 4	0.0 0	+	
4889.30	1,2	4280.33 10	100 0	002.7271 2	+	E : poor fit I aval anarry difference=4880.2
4807.6	0^{+} to 3^{+}	4090.0 J	100	602 7271 2	+	E_{γ} . poor nr. Lever-energy unicience=4009.3.
4097.0	$2^+ 2^+$	+294.0 4 1811 0 1	50 10	3100.67 1	2^+	
4711.41	2,3	3586.0.3	100 16	1325 5131 2	,∠ +	
		3661.0.5	88 50	1049 5911 4	+	
4015 7	1.2+	3034.0.6	00 JU 71 AO	1240.J011 4 1882.02 0-	+	
7913.1	1,4	4313.0.7	71 40	602.92 0	+	
		-515.0 /	24 12	002.7271 2		

33

$^{124}_{52}$ Te₇₂-33

γ (¹²⁴Te) (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	$I_{\gamma}^{@}$	\mathbf{E}_{f}	\mathbf{J}_{f}^{π}	E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	$I_{\gamma}^{@}$	\mathbf{E}_{f}	\mathbf{J}_f^{π}
4915.7	1,2+	4915.2 <i>3</i>	100 24	0.0	0^{+}	5132.3	1,2+	5132.4 10	100 50	0.0	0+
4932.0	0^{+} to 3^{+}	4329.2 5	100	602.7271	2^{+}	5155.94	$1,2^{+}$	2409.1 5	53 9	2747.04	$1^{(-)}$
4941.8	$1,2^{+}$	4941.7 <i>4</i>	100	0.0	0^{+}			2701.78 14	67 4	2454.069	2+
4962.51	0^{+} to 3^{+}	4359.70 16	100	602.7271	2^{+}			3831.3 5	100 50	1325.5131	2^{+}
4979.58	0^{+} to 3^{+}	4376.77 17	100	602.7271	2+			4553.0 5	47 30	602.7271	2+
4984.7	0^{+} to 3^{+}	1884.0 8	100	3100.67	$1,2^{+}$			5154.3 <i>11</i>	27 16	0.0	0^{+}
4990.4	0^{+} to 3^{+}	3664.8 <i>3</i>	100	1325.5131	2+	5169.7	$1,2^{+}$	4567.3 5	100 8	602.7271	2+
4993.51	$1,2^{+}$	4993.40 21	100	0.0	0^{+}			5169.1 5	47 30	0.0	0^{+}
5036.9	$1,2^{+}$	4434.4 5	100 40	602.7271	2^{+}	5285.5	0^{+} to 4^{+}	3959.9 6	100	1325.5131	2+
		5035.6 10	11 4	0.0	0^{+}	5319.2	0^{+} to 3^{+}	831.9 5	100	4487.3	$1,2^{+}$
5050.72	$1,2^{+}$	5050.61 25	100	0.0	0^{+}	5423.9	0^{+} to 3^{+}	4821.1 4	100	602.7271	2+
5075.83	$1,2^{+}$	3750.1 5	64 40	1325.5131	2+	5445.4	$1,2^{+}$	4119.6 4	100 40	1325.5131	2+
		4472.1 5	100 40	602.7271	2^{+}			5447.7 15	29 21	0.0	0^{+}
		5076.1 <i>3</i>	45 9	0.0	0^{+}	5488.5	$1,2^{+}$	5488.4 6	100	0.0	0^{+}
5127.29	0^{+} to 4^{+}	3801.71 <i>19</i>	100	1325.5131	2+	5751.40	0^{+} to 3^{+}	5148.56 23	100	602.7271	2+
5132.3	1,2+	4529.3 10	100 50	602.7271	2+						

[†] Average from ¹²⁴Sb β^- decays (60.20 d, 93 s), ¹²⁴I ε decay and (n, γ), (α ,2n γ) and (n,n' γ), unless otherwise noted.

^{\ddagger} The final level of the transition was just assumed by evaluator. And it should be one of the 2039[2⁺] or 2039[3⁺] level.

[#] From (n,γ) E=thermal. Energy values are recalculated because 2000Do11 gives them as relative to the transition from the first 2⁺ state to the ground state.

[@] Average from ¹²⁴Sb β^- decays (60.20 d, 93 s), ¹²⁴I ε decay and (n, γ), (α ,2n γ) and (n,n' γ), unless otherwise noted.

& From (n,γ) .

34

^{*a*} From $\gamma\gamma(\theta)$ and $\alpha(K)$ exp in ¹²⁴Sb β^- decay (60.20 d), $\alpha(K)$ exp in ¹²⁴I ε decay and (n,γ) , and $\gamma(\theta)$ in $(\alpha,2n\gamma)$, unless otherwise indicated.

^b From nuclear orientation in ¹²⁴Sb β^- decay (60.20 d), unless otherwise indicated.

^c Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ-ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

^d Multiply placed.

^e Multiply placed with undivided intensity.

^f Multiply placed with intensity suitably divided.

^g Placement of transition in the level scheme is uncertain.

Level Scheme

Level Scheme (continued)

Intensities: Relative photon branching from each level

 $^{124}_{52}{
m Te}_{72}$

Level Scheme (continued)

Intensities: Relative photon branching from each level

 $^{124}_{52}{\rm Te}_{72}$

Level Scheme (continued)

¹²⁴₅₂Te₇₂

Level Scheme (continued)

Level Scheme (continued)

Intensities: Relative photon branching from each level

¹²⁴₅₂Te₇₂

Level Scheme (continued)

Level Scheme (continued)

 $^{124}_{52}{\rm Te}_{72}$

Level Scheme (continued)

Level Scheme (continued)

 $^{124}_{52}{
m Te}_{72}$

Level Scheme (continued)

Level Scheme (continued)

¹²⁴₅₂Te₇₂

Level Scheme (continued)

¹²⁴₅₂Te₇₂

Level Scheme (continued)

Level Scheme (continued)

 $^{124}_{52}{\rm Te}_{72}$

Level Scheme (continued)

Intensities: Relative photon branching from each level @ Multiply placed: intensity suitably divided

Level Scheme (continued)

Intensities: Relative photon branching from each level @ Multiply placed: intensity suitably divided

 $^{124}_{52}$ Te $_{72}$

Level Scheme (continued)

Intensities: Relative photon branching from each level @ Multiply placed: intensity suitably divided

Level Scheme (continued)

Intensities: Relative photon branching from each level @ Multiply placed: intensity suitably divided

¹²⁴₅₂Te₇₂

Level Scheme (continued)

Intensities: Relative photon branching from each level @ Multiply placed: intensity suitably divided

¹²⁴₅₂Te₇₂

¹²⁴₅₂Te₇₂

¹²⁴₅₂Te₇₂

 $^{124}_{52}$ Te₇₂-57

From ENSDF

 $^{124}_{52}$ Te₇₂-57

Level Scheme (continued)

Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given @ Multiply placed: intensity suitably divided

¹²⁴₅₂Te₇₂